salbatarni commited on
Commit
1231e8e
1 Parent(s): b0ff648

End of training

Browse files
Files changed (1) hide show
  1. README.md +87 -82
README.md CHANGED
@@ -3,20 +3,20 @@ base_model: aubmindlab/bert-base-arabertv02
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
- - name: arabert_cross_organization_task7_fold4
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
- # arabert_cross_organization_task7_fold4
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
- - Loss: 0.5739
18
- - Qwk: 0.7967
19
- - Mse: 0.5739
20
 
21
  ## Model description
22
 
@@ -45,83 +45,88 @@ The following hyperparameters were used during training:
45
 
46
  ### Training results
47
 
48
- | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
- |:-------------:|:------:|:----:|:---------------:|:------:|:------:|
50
- | No log | 0.1333 | 2 | 1.9448 | 0.1649 | 1.9447 |
51
- | No log | 0.2667 | 4 | 1.4779 | 0.0771 | 1.4779 |
52
- | No log | 0.4 | 6 | 1.3512 | 0.4234 | 1.3512 |
53
- | No log | 0.5333 | 8 | 0.9818 | 0.5170 | 0.9818 |
54
- | No log | 0.6667 | 10 | 0.9848 | 0.7218 | 0.9848 |
55
- | No log | 0.8 | 12 | 0.7546 | 0.7580 | 0.7546 |
56
- | No log | 0.9333 | 14 | 0.6613 | 0.7635 | 0.6613 |
57
- | No log | 1.0667 | 16 | 0.5901 | 0.7415 | 0.5901 |
58
- | No log | 1.2 | 18 | 0.5891 | 0.6836 | 0.5891 |
59
- | No log | 1.3333 | 20 | 0.6666 | 0.7927 | 0.6666 |
60
- | No log | 1.4667 | 22 | 0.7821 | 0.7742 | 0.7821 |
61
- | No log | 1.6 | 24 | 0.5788 | 0.7710 | 0.5788 |
62
- | No log | 1.7333 | 26 | 0.5726 | 0.6635 | 0.5726 |
63
- | No log | 1.8667 | 28 | 0.5773 | 0.7575 | 0.5773 |
64
- | No log | 2.0 | 30 | 0.8482 | 0.7672 | 0.8482 |
65
- | No log | 2.1333 | 32 | 0.9640 | 0.7499 | 0.9640 |
66
- | No log | 2.2667 | 34 | 0.7191 | 0.7738 | 0.7191 |
67
- | No log | 2.4 | 36 | 0.5565 | 0.7624 | 0.5565 |
68
- | No log | 2.5333 | 38 | 0.5998 | 0.6630 | 0.5998 |
69
- | No log | 2.6667 | 40 | 0.5526 | 0.7554 | 0.5526 |
70
- | No log | 2.8 | 42 | 0.6355 | 0.7866 | 0.6355 |
71
- | No log | 2.9333 | 44 | 0.7893 | 0.7696 | 0.7893 |
72
- | No log | 3.0667 | 46 | 0.7015 | 0.7820 | 0.7015 |
73
- | No log | 3.2 | 48 | 0.5349 | 0.7719 | 0.5349 |
74
- | No log | 3.3333 | 50 | 0.5250 | 0.7364 | 0.5250 |
75
- | No log | 3.4667 | 52 | 0.5324 | 0.7720 | 0.5324 |
76
- | No log | 3.6 | 54 | 0.6922 | 0.7790 | 0.6922 |
77
- | No log | 3.7333 | 56 | 0.7969 | 0.7647 | 0.7969 |
78
- | No log | 3.8667 | 58 | 0.7515 | 0.7687 | 0.7515 |
79
- | No log | 4.0 | 60 | 0.5754 | 0.7791 | 0.5754 |
80
- | No log | 4.1333 | 62 | 0.5295 | 0.7890 | 0.5295 |
81
- | No log | 4.2667 | 64 | 0.5568 | 0.7950 | 0.5568 |
82
- | No log | 4.4 | 66 | 0.6597 | 0.7830 | 0.6597 |
83
- | No log | 4.5333 | 68 | 0.7200 | 0.7855 | 0.7200 |
84
- | No log | 4.6667 | 70 | 0.6382 | 0.7912 | 0.6382 |
85
- | No log | 4.8 | 72 | 0.5464 | 0.7964 | 0.5464 |
86
- | No log | 4.9333 | 74 | 0.5642 | 0.7927 | 0.5642 |
87
- | No log | 5.0667 | 76 | 0.5529 | 0.7877 | 0.5529 |
88
- | No log | 5.2 | 78 | 0.5685 | 0.7941 | 0.5685 |
89
- | No log | 5.3333 | 80 | 0.5692 | 0.8019 | 0.5692 |
90
- | No log | 5.4667 | 82 | 0.5649 | 0.8048 | 0.5649 |
91
- | No log | 5.6 | 84 | 0.5735 | 0.8008 | 0.5735 |
92
- | No log | 5.7333 | 86 | 0.5626 | 0.7884 | 0.5626 |
93
- | No log | 5.8667 | 88 | 0.5496 | 0.7807 | 0.5496 |
94
- | No log | 6.0 | 90 | 0.5597 | 0.7832 | 0.5597 |
95
- | No log | 6.1333 | 92 | 0.5892 | 0.8044 | 0.5892 |
96
- | No log | 6.2667 | 94 | 0.5985 | 0.8021 | 0.5985 |
97
- | No log | 6.4 | 96 | 0.5764 | 0.7946 | 0.5764 |
98
- | No log | 6.5333 | 98 | 0.5254 | 0.7832 | 0.5254 |
99
- | No log | 6.6667 | 100 | 0.5198 | 0.7806 | 0.5198 |
100
- | No log | 6.8 | 102 | 0.5624 | 0.7979 | 0.5624 |
101
- | No log | 6.9333 | 104 | 0.5920 | 0.7935 | 0.5920 |
102
- | No log | 7.0667 | 106 | 0.6267 | 0.8062 | 0.6267 |
103
- | No log | 7.2 | 108 | 0.6433 | 0.8077 | 0.6433 |
104
- | No log | 7.3333 | 110 | 0.5670 | 0.7975 | 0.5670 |
105
- | No log | 7.4667 | 112 | 0.5349 | 0.7881 | 0.5349 |
106
- | No log | 7.6 | 114 | 0.5360 | 0.7932 | 0.5360 |
107
- | No log | 7.7333 | 116 | 0.5494 | 0.7932 | 0.5494 |
108
- | No log | 7.8667 | 118 | 0.5884 | 0.8142 | 0.5884 |
109
- | No log | 8.0 | 120 | 0.6313 | 0.8158 | 0.6313 |
110
- | No log | 8.1333 | 122 | 0.6069 | 0.8159 | 0.6069 |
111
- | No log | 8.2667 | 124 | 0.5732 | 0.8053 | 0.5732 |
112
- | No log | 8.4 | 126 | 0.5567 | 0.7975 | 0.5567 |
113
- | No log | 8.5333 | 128 | 0.5440 | 0.7789 | 0.5440 |
114
- | No log | 8.6667 | 130 | 0.5462 | 0.7810 | 0.5462 |
115
- | No log | 8.8 | 132 | 0.5522 | 0.7873 | 0.5522 |
116
- | No log | 8.9333 | 134 | 0.5458 | 0.7876 | 0.5458 |
117
- | No log | 9.0667 | 136 | 0.5390 | 0.7905 | 0.5390 |
118
- | No log | 9.2 | 138 | 0.5392 | 0.7901 | 0.5392 |
119
- | No log | 9.3333 | 140 | 0.5491 | 0.7943 | 0.5491 |
120
- | No log | 9.4667 | 142 | 0.5675 | 0.7937 | 0.5675 |
121
- | No log | 9.6 | 144 | 0.5753 | 0.7967 | 0.5753 |
122
- | No log | 9.7333 | 146 | 0.5745 | 0.7967 | 0.5745 |
123
- | No log | 9.8667 | 148 | 0.5743 | 0.7967 | 0.5743 |
124
- | No log | 10.0 | 150 | 0.5739 | 0.7967 | 0.5739 |
 
 
 
 
 
125
 
126
 
127
  ### Framework versions
 
3
  tags:
4
  - generated_from_trainer
5
  model-index:
6
+ - name: arabert_cross_organization_task7_fold5
7
  results: []
8
  ---
9
 
10
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
11
  should probably proofread and complete it, then remove this comment. -->
12
 
13
+ # arabert_cross_organization_task7_fold5
14
 
15
  This model is a fine-tuned version of [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) on the None dataset.
16
  It achieves the following results on the evaluation set:
17
+ - Loss: 0.5800
18
+ - Qwk: 0.7690
19
+ - Mse: 0.5800
20
 
21
  ## Model description
22
 
 
45
 
46
  ### Training results
47
 
48
+ | Training Loss | Epoch | Step | Validation Loss | Qwk | Mse |
49
+ |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|
50
+ | No log | 0.125 | 2 | 3.1878 | 0.0032 | 3.1878 |
51
+ | No log | 0.25 | 4 | 1.6075 | 0.1098 | 1.6075 |
52
+ | No log | 0.375 | 6 | 1.1035 | 0.2670 | 1.1035 |
53
+ | No log | 0.5 | 8 | 1.4112 | 0.3086 | 1.4112 |
54
+ | No log | 0.625 | 10 | 1.3436 | 0.3880 | 1.3436 |
55
+ | No log | 0.75 | 12 | 1.1181 | 0.3654 | 1.1181 |
56
+ | No log | 0.875 | 14 | 0.8279 | 0.4164 | 0.8279 |
57
+ | No log | 1.0 | 16 | 0.6795 | 0.4918 | 0.6795 |
58
+ | No log | 1.125 | 18 | 0.6997 | 0.5370 | 0.6997 |
59
+ | No log | 1.25 | 20 | 0.8208 | 0.6120 | 0.8208 |
60
+ | No log | 1.375 | 22 | 0.7785 | 0.7348 | 0.7785 |
61
+ | No log | 1.5 | 24 | 0.6388 | 0.7210 | 0.6388 |
62
+ | No log | 1.625 | 26 | 0.6688 | 0.7365 | 0.6688 |
63
+ | No log | 1.75 | 28 | 0.6507 | 0.7403 | 0.6507 |
64
+ | No log | 1.875 | 30 | 0.5320 | 0.7356 | 0.5320 |
65
+ | No log | 2.0 | 32 | 0.5254 | 0.7454 | 0.5254 |
66
+ | No log | 2.125 | 34 | 0.5348 | 0.7325 | 0.5348 |
67
+ | No log | 2.25 | 36 | 0.6139 | 0.7376 | 0.6139 |
68
+ | No log | 2.375 | 38 | 0.6648 | 0.7474 | 0.6648 |
69
+ | No log | 2.5 | 40 | 0.5894 | 0.7707 | 0.5894 |
70
+ | No log | 2.625 | 42 | 0.5580 | 0.7530 | 0.5580 |
71
+ | No log | 2.75 | 44 | 0.5824 | 0.7698 | 0.5824 |
72
+ | No log | 2.875 | 46 | 0.6444 | 0.7641 | 0.6444 |
73
+ | No log | 3.0 | 48 | 0.5327 | 0.7206 | 0.5327 |
74
+ | No log | 3.125 | 50 | 0.5871 | 0.7517 | 0.5871 |
75
+ | No log | 3.25 | 52 | 0.5331 | 0.7366 | 0.5331 |
76
+ | No log | 3.375 | 54 | 0.6130 | 0.7665 | 0.6130 |
77
+ | No log | 3.5 | 56 | 0.5889 | 0.7650 | 0.5889 |
78
+ | No log | 3.625 | 58 | 0.5848 | 0.7758 | 0.5848 |
79
+ | No log | 3.75 | 60 | 0.7089 | 0.7737 | 0.7089 |
80
+ | No log | 3.875 | 62 | 0.7846 | 0.7865 | 0.7846 |
81
+ | No log | 4.0 | 64 | 0.6552 | 0.7793 | 0.6552 |
82
+ | No log | 4.125 | 66 | 0.5020 | 0.7284 | 0.5020 |
83
+ | No log | 4.25 | 68 | 0.5170 | 0.7322 | 0.5170 |
84
+ | No log | 4.375 | 70 | 0.5877 | 0.7481 | 0.5877 |
85
+ | No log | 4.5 | 72 | 0.5700 | 0.7494 | 0.5700 |
86
+ | No log | 4.625 | 74 | 0.5147 | 0.7380 | 0.5147 |
87
+ | No log | 4.75 | 76 | 0.5942 | 0.7664 | 0.5942 |
88
+ | No log | 4.875 | 78 | 0.6564 | 0.7710 | 0.6564 |
89
+ | No log | 5.0 | 80 | 0.6565 | 0.7710 | 0.6565 |
90
+ | No log | 5.125 | 82 | 0.6572 | 0.7802 | 0.6572 |
91
+ | No log | 5.25 | 84 | 0.6860 | 0.7836 | 0.6860 |
92
+ | No log | 5.375 | 86 | 0.6265 | 0.7687 | 0.6265 |
93
+ | No log | 5.5 | 88 | 0.5116 | 0.7530 | 0.5116 |
94
+ | No log | 5.625 | 90 | 0.5026 | 0.7603 | 0.5026 |
95
+ | No log | 5.75 | 92 | 0.5588 | 0.7542 | 0.5588 |
96
+ | No log | 5.875 | 94 | 0.6752 | 0.7902 | 0.6752 |
97
+ | No log | 6.0 | 96 | 0.7891 | 0.7984 | 0.7891 |
98
+ | No log | 6.125 | 98 | 0.7038 | 0.7947 | 0.7038 |
99
+ | No log | 6.25 | 100 | 0.5797 | 0.7519 | 0.5797 |
100
+ | No log | 6.375 | 102 | 0.5895 | 0.7634 | 0.5895 |
101
+ | No log | 6.5 | 104 | 0.6498 | 0.7782 | 0.6498 |
102
+ | No log | 6.625 | 106 | 0.5864 | 0.7623 | 0.5864 |
103
+ | No log | 6.75 | 108 | 0.5259 | 0.7227 | 0.5259 |
104
+ | No log | 6.875 | 110 | 0.5133 | 0.7040 | 0.5133 |
105
+ | No log | 7.0 | 112 | 0.5219 | 0.7120 | 0.5219 |
106
+ | No log | 7.125 | 114 | 0.5822 | 0.7464 | 0.5822 |
107
+ | No log | 7.25 | 116 | 0.6526 | 0.7676 | 0.6526 |
108
+ | No log | 7.375 | 118 | 0.6628 | 0.7818 | 0.6628 |
109
+ | No log | 7.5 | 120 | 0.6080 | 0.7726 | 0.6080 |
110
+ | No log | 7.625 | 122 | 0.5645 | 0.7416 | 0.5645 |
111
+ | No log | 7.75 | 124 | 0.5592 | 0.7409 | 0.5592 |
112
+ | No log | 7.875 | 126 | 0.5637 | 0.7527 | 0.5637 |
113
+ | No log | 8.0 | 128 | 0.5640 | 0.7522 | 0.5640 |
114
+ | No log | 8.125 | 130 | 0.5743 | 0.7522 | 0.5743 |
115
+ | No log | 8.25 | 132 | 0.6128 | 0.7551 | 0.6128 |
116
+ | No log | 8.375 | 134 | 0.6083 | 0.7551 | 0.6083 |
117
+ | No log | 8.5 | 136 | 0.5761 | 0.7661 | 0.5761 |
118
+ | No log | 8.625 | 138 | 0.5522 | 0.7596 | 0.5522 |
119
+ | No log | 8.75 | 140 | 0.5418 | 0.7580 | 0.5418 |
120
+ | No log | 8.875 | 142 | 0.5541 | 0.7626 | 0.5541 |
121
+ | No log | 9.0 | 144 | 0.5890 | 0.7591 | 0.5890 |
122
+ | No log | 9.125 | 146 | 0.6347 | 0.7704 | 0.6347 |
123
+ | No log | 9.25 | 148 | 0.6524 | 0.7643 | 0.6524 |
124
+ | No log | 9.375 | 150 | 0.6441 | 0.7643 | 0.6441 |
125
+ | No log | 9.5 | 152 | 0.6196 | 0.7597 | 0.6196 |
126
+ | No log | 9.625 | 154 | 0.5988 | 0.7575 | 0.5988 |
127
+ | No log | 9.75 | 156 | 0.5835 | 0.7591 | 0.5835 |
128
+ | No log | 9.875 | 158 | 0.5803 | 0.7672 | 0.5803 |
129
+ | No log | 10.0 | 160 | 0.5800 | 0.7690 | 0.5800 |
130
 
131
 
132
  ### Framework versions