sakharamg's picture
Uploading all files
158b61b
"""
This is the loadable seq2seq trainer library that is
in charge of training details, loss compute, and statistics.
See train.py for a use case of this library.
Note: To make this a general library, we implement *only*
mechanism things here(i.e. what to do), and leave the strategy
things to users(i.e. how to do it). Also see train.py(one of the
users of this library) for the strategy things we do.
"""
import torch
import traceback
import onmt.utils
from onmt.utils.logging import logger
def build_trainer(opt, device_id, model, fields, optim, model_saver=None):
"""
Simplify `Trainer` creation based on user `opt`s*
Args:
opt (:obj:`Namespace`): user options (usually from argument parsing)
model (:obj:`onmt.models.NMTModel`): the model to train
fields (dict): dict of fields
optim (:obj:`onmt.utils.Optimizer`): optimizer used during training
data_type (str): string describing the type of data
e.g. "text"
model_saver(:obj:`onmt.models.ModelSaverBase`): the utility object
used to save the model
"""
tgt_field = dict(fields)["tgt"].base_field
train_loss = onmt.utils.loss.build_loss_compute(model, tgt_field, opt)
valid_loss = onmt.utils.loss.build_loss_compute(
model, tgt_field, opt, train=False)
trunc_size = opt.truncated_decoder # Badly named...
shard_size = opt.max_generator_batches if opt.model_dtype == 'fp32' else 0
norm_method = opt.normalization
accum_count = opt.accum_count
accum_steps = opt.accum_steps
n_gpu = opt.world_size
average_decay = opt.average_decay
average_every = opt.average_every
dropout = opt.dropout
dropout_steps = opt.dropout_steps
if device_id >= 0:
gpu_rank = opt.gpu_ranks[device_id]
else:
gpu_rank = -1
n_gpu = 0
gpu_verbose_level = opt.gpu_verbose_level
earlystopper = onmt.utils.EarlyStopping(
opt.early_stopping, scorers=onmt.utils.scorers_from_opts(opt)) \
if opt.early_stopping > 0 else None
report_manager = onmt.utils.build_report_manager(opt, gpu_rank)
trainer = onmt.Trainer(model, train_loss, valid_loss, optim, trunc_size,
shard_size, norm_method,
accum_count, accum_steps,
n_gpu, gpu_rank,
gpu_verbose_level, report_manager,
with_align=True if opt.lambda_align > 0 else False,
model_saver=model_saver if gpu_rank <= 0 else None,
average_decay=average_decay,
average_every=average_every,
model_dtype=opt.model_dtype,
earlystopper=earlystopper,
dropout=dropout,
dropout_steps=dropout_steps)
return trainer
class Trainer(object):
"""
Class that controls the training process.
Args:
model(:py:class:`onmt.models.model.NMTModel`): translation model
to train
train_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
valid_loss(:obj:`onmt.utils.loss.LossComputeBase`):
training loss computation
optim(:obj:`onmt.utils.optimizers.Optimizer`):
the optimizer responsible for update
trunc_size(int): length of truncated back propagation through time
shard_size(int): compute loss in shards of this size for efficiency
data_type(string): type of the source input: [text]
norm_method(string): normalization methods: [sents|tokens]
accum_count(list): accumulate gradients this many times.
accum_steps(list): steps for accum gradients changes.
report_manager(:obj:`onmt.utils.ReportMgrBase`):
the object that creates reports, or None
model_saver(:obj:`onmt.models.ModelSaverBase`): the saver is
used to save a checkpoint.
Thus nothing will be saved if this parameter is None
"""
def __init__(self, model, train_loss, valid_loss, optim,
trunc_size=0, shard_size=32,
norm_method="sents", accum_count=[1],
accum_steps=[0],
n_gpu=1, gpu_rank=1, gpu_verbose_level=0,
report_manager=None, with_align=False, model_saver=None,
average_decay=0, average_every=1, model_dtype='fp32',
earlystopper=None, dropout=[0.3], dropout_steps=[0]):
# Basic attributes.
self.model = model
self.train_loss = train_loss
self.valid_loss = valid_loss
self.optim = optim
self.trunc_size = trunc_size
self.shard_size = shard_size
self.norm_method = norm_method
self.accum_count_l = accum_count
self.accum_count = accum_count[0]
self.accum_steps = accum_steps
self.n_gpu = n_gpu
self.gpu_rank = gpu_rank
self.gpu_verbose_level = gpu_verbose_level
self.report_manager = report_manager
self.with_align = with_align
self.model_saver = model_saver
self.average_decay = average_decay
self.moving_average = None
self.average_every = average_every
self.model_dtype = model_dtype
self.earlystopper = earlystopper
self.dropout = dropout
self.dropout_steps = dropout_steps
for i in range(len(self.accum_count_l)):
assert self.accum_count_l[i] > 0
if self.accum_count_l[i] > 1:
assert self.trunc_size == 0, \
"""To enable accumulated gradients,
you must disable target sequence truncating."""
# Set model in training mode.
self.model.train()
def _accum_count(self, step):
for i in range(len(self.accum_steps)):
if step > self.accum_steps[i]:
_accum = self.accum_count_l[i]
return _accum
def _maybe_update_dropout(self, step):
for i in range(len(self.dropout_steps)):
if step > 1 and step == self.dropout_steps[i] + 1:
self.model.update_dropout(self.dropout[i])
logger.info("Updated dropout to %f from step %d"
% (self.dropout[i], step))
def _accum_batches(self, iterator):
batches = []
normalization = 0
self.accum_count = self._accum_count(self.optim.training_step)
for batch in iterator:
batches.append(batch)
if self.norm_method == "tokens":
num_tokens = batch.tgt[1:, :, 0].ne(
self.train_loss.padding_idx).sum()
normalization += num_tokens.item()
else:
normalization += batch.batch_size
if len(batches) == self.accum_count:
yield batches, normalization
self.accum_count = self._accum_count(self.optim.training_step)
batches = []
normalization = 0
if batches:
yield batches, normalization
def _update_average(self, step):
if self.moving_average is None:
copy_params = [params.detach().float()
for params in self.model.parameters()]
self.moving_average = copy_params
else:
average_decay = max(self.average_decay,
1 - (step + 1) / (step + 10))
for (i, avg), cpt in zip(enumerate(self.moving_average),
self.model.parameters()):
self.moving_average[i] = \
(1 - average_decay) * avg + \
cpt.detach().float() * average_decay
def train(self,
train_iter,
train_steps,
save_checkpoint_steps=5000,
valid_iter=None,
valid_steps=10000):
"""
The main training loop by iterating over `train_iter` and possibly
running validation on `valid_iter`.
Args:
train_iter: A generator that returns the next training batch.
train_steps: Run training for this many iterations.
save_checkpoint_steps: Save a checkpoint every this many
iterations.
valid_iter: A generator that returns the next validation batch.
valid_steps: Run evaluation every this many iterations.
Returns:
The gathered statistics.
"""
if valid_iter is None:
logger.info('Start training loop without validation...')
else:
logger.info('Start training loop and validate every %d steps...',
valid_steps)
total_stats = onmt.utils.Statistics()
report_stats = onmt.utils.Statistics()
self._start_report_manager(start_time=total_stats.start_time)
for i, (batches, normalization) in enumerate(
self._accum_batches(train_iter)):
step = self.optim.training_step
# UPDATE DROPOUT
self._maybe_update_dropout(step)
if self.gpu_verbose_level > 1:
logger.info("GpuRank %d: index: %d", self.gpu_rank, i)
if self.gpu_verbose_level > 0:
logger.info("GpuRank %d: reduce_counter: %d \
n_minibatch %d"
% (self.gpu_rank, i + 1, len(batches)))
if self.n_gpu > 1:
normalization = sum(onmt.utils.distributed
.all_gather_list
(normalization))
self._gradient_accumulation(
batches, normalization, total_stats,
report_stats)
if self.average_decay > 0 and i % self.average_every == 0:
self._update_average(step)
report_stats = self._maybe_report_training(
step, train_steps,
self.optim.learning_rate(),
report_stats)
if valid_iter is not None and step % valid_steps == 0:
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: validate step %d'
% (self.gpu_rank, step))
valid_stats = self.validate(
valid_iter, moving_average=self.moving_average)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: gather valid stat \
step %d' % (self.gpu_rank, step))
valid_stats = self._maybe_gather_stats(valid_stats)
if self.gpu_verbose_level > 0:
logger.info('GpuRank %d: report stat step %d'
% (self.gpu_rank, step))
self._report_step(self.optim.learning_rate(),
step, valid_stats=valid_stats)
# Run patience mechanism
if self.earlystopper is not None:
self.earlystopper(valid_stats, step)
# If the patience has reached the limit, stop training
if self.earlystopper.has_stopped():
break
if (self.model_saver is not None
and (save_checkpoint_steps != 0
and step % save_checkpoint_steps == 0)):
self.model_saver.save(step, moving_average=self.moving_average)
if train_steps > 0 and step >= train_steps:
break
if self.model_saver is not None:
self.model_saver.save(step, moving_average=self.moving_average)
return total_stats
def validate(self, valid_iter, moving_average=None):
""" Validate model.
valid_iter: validate data iterator
Returns:
:obj:`nmt.Statistics`: validation loss statistics
"""
valid_model = self.model
if moving_average:
# swap model params w/ moving average
# (and keep the original parameters)
model_params_data = []
for avg, param in zip(self.moving_average,
valid_model.parameters()):
model_params_data.append(param.data)
param.data = avg.data.half() if self.optim._fp16 == "legacy" \
else avg.data
# Set model in validating mode.
valid_model.eval()
with torch.no_grad():
stats = onmt.utils.Statistics()
for batch in valid_iter:
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
tgt = batch.tgt
with torch.cuda.amp.autocast(enabled=self.optim.amp):
# F-prop through the model.
outputs, attns = valid_model(src, tgt, src_lengths,
with_align=self.with_align)
# Compute loss.
_, batch_stats = self.valid_loss(batch, outputs, attns)
# Update statistics.
stats.update(batch_stats)
if moving_average:
for param_data, param in zip(model_params_data,
self.model.parameters()):
param.data = param_data
# Set model back to training mode.
valid_model.train()
return stats
def _gradient_accumulation(self, true_batches, normalization, total_stats,
report_stats):
if self.accum_count > 1:
self.optim.zero_grad()
for k, batch in enumerate(true_batches):
target_size = batch.tgt.size(0)
# Truncated BPTT: reminder not compatible with accum > 1
if self.trunc_size:
trunc_size = self.trunc_size
else:
trunc_size = target_size
src, src_lengths = batch.src if isinstance(batch.src, tuple) \
else (batch.src, None)
if src_lengths is not None:
report_stats.n_src_words += src_lengths.sum().item()
tgt_outer = batch.tgt
bptt = False
for j in range(0, target_size - 1, trunc_size):
# 1. Create truncated target.
tgt = tgt_outer[j: j + trunc_size]
# 2. F-prop all but generator.
if self.accum_count == 1:
self.optim.zero_grad()
with torch.cuda.amp.autocast(enabled=self.optim.amp):
outputs, attns = self.model(
src, tgt, src_lengths, bptt=bptt,
with_align=self.with_align)
bptt = True
# 3. Compute loss.
loss, batch_stats = self.train_loss(
batch,
outputs,
attns,
normalization=normalization,
shard_size=self.shard_size,
trunc_start=j,
trunc_size=trunc_size)
try:
if loss is not None:
self.optim.backward(loss)
total_stats.update(batch_stats)
report_stats.update(batch_stats)
except Exception:
traceback.print_exc()
logger.info("At step %d, we removed a batch - accum %d",
self.optim.training_step, k)
# 4. Update the parameters and statistics.
if self.accum_count == 1:
# Multi GPU gradient gather
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
# If truncated, don't backprop fully.
# TO CHECK
# if dec_state is not None:
# dec_state.detach()
if self.model.decoder.state is not None:
self.model.decoder.detach_state()
# in case of multi step gradient accumulation,
# update only after accum batches
if self.accum_count > 1:
if self.n_gpu > 1:
grads = [p.grad.data for p in self.model.parameters()
if p.requires_grad
and p.grad is not None]
onmt.utils.distributed.all_reduce_and_rescale_tensors(
grads, float(1))
self.optim.step()
def _start_report_manager(self, start_time=None):
"""
Simple function to start report manager (if any)
"""
if self.report_manager is not None:
if start_time is None:
self.report_manager.start()
else:
self.report_manager.start_time = start_time
def _maybe_gather_stats(self, stat):
"""
Gather statistics in multi-processes cases
Args:
stat(:obj:onmt.utils.Statistics): a Statistics object to gather
or None (it returns None in this case)
Returns:
stat: the updated (or unchanged) stat object
"""
if stat is not None and self.n_gpu > 1:
return onmt.utils.Statistics.all_gather_stats(stat)
return stat
def _maybe_report_training(self, step, num_steps, learning_rate,
report_stats):
"""
Simple function to report training stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_training` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_training(
step,
num_steps,
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
report_stats,
multigpu=self.n_gpu > 1)
def _report_step(self, learning_rate, step, train_stats=None,
valid_stats=None):
"""
Simple function to report stats (if report_manager is set)
see `onmt.utils.ReportManagerBase.report_step` for doc
"""
if self.report_manager is not None:
return self.report_manager.report_step(
learning_rate,
None if self.earlystopper is None
else self.earlystopper.current_tolerance,
step, train_stats=train_stats,
valid_stats=valid_stats)