NMTKD / translation /OpenNMT-py /onmt /model_builder.py
sakharamg's picture
Uploading all files
158b61b
"""
This file is for models creation, which consults options
and creates each encoder and decoder accordingly.
"""
import re
import torch
import torch.nn as nn
from torch.nn.init import xavier_uniform_
import onmt.modules
from onmt.encoders import str2enc
from onmt.decoders import str2dec
from onmt.modules import Embeddings, CopyGenerator
from onmt.modules.util_class import Cast
from onmt.utils.misc import use_gpu
from onmt.utils.logging import logger
from onmt.utils.parse import ArgumentParser
from onmt.constants import ModelTask
def build_embeddings(opt, text_field, for_encoder=True):
"""
Args:
opt: the option in current environment.
text_field(TextMultiField): word and feats field.
for_encoder(bool): build Embeddings for encoder or decoder?
"""
emb_dim = opt.src_word_vec_size if for_encoder else opt.tgt_word_vec_size
pad_indices = [f.vocab.stoi[f.pad_token] for _, f in text_field]
word_padding_idx, feat_pad_indices = pad_indices[0], pad_indices[1:]
num_embs = [len(f.vocab) for _, f in text_field]
num_word_embeddings, num_feat_embeddings = num_embs[0], num_embs[1:]
freeze_word_vecs = opt.freeze_word_vecs_enc if for_encoder \
else opt.freeze_word_vecs_dec
emb = Embeddings(
word_vec_size=emb_dim,
position_encoding=opt.position_encoding,
feat_merge=opt.feat_merge,
feat_vec_exponent=opt.feat_vec_exponent,
feat_vec_size=opt.feat_vec_size,
dropout=opt.dropout[0] if type(opt.dropout) is list else opt.dropout,
word_padding_idx=word_padding_idx,
feat_padding_idx=feat_pad_indices,
word_vocab_size=num_word_embeddings,
feat_vocab_sizes=num_feat_embeddings,
sparse=opt.optim == "sparseadam",
freeze_word_vecs=freeze_word_vecs
)
return emb
def build_encoder(opt, embeddings):
"""
Various encoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this encoder.
"""
enc_type = opt.encoder_type if opt.model_type == "text" else opt.model_type
return str2enc[enc_type].from_opt(opt, embeddings)
def build_decoder(opt, embeddings):
"""
Various decoder dispatcher function.
Args:
opt: the option in current environment.
embeddings (Embeddings): vocab embeddings for this decoder.
"""
dec_type = "ifrnn" if opt.decoder_type == "rnn" and opt.input_feed \
else opt.decoder_type
return str2dec[dec_type].from_opt(opt, embeddings)
def load_test_model(opt, model_path=None):
if model_path is None:
model_path = opt.models[0]
checkpoint = torch.load(model_path,
map_location=lambda storage, loc: storage)
model_opt = ArgumentParser.ckpt_model_opts(checkpoint['opt'])
ArgumentParser.update_model_opts(model_opt)
ArgumentParser.validate_model_opts(model_opt)
fields = checkpoint['vocab']
# Avoid functionality on inference
model_opt.update_vocab = False
model = build_base_model(model_opt, fields, use_gpu(opt), checkpoint,
opt.gpu)
if opt.fp32:
model.float()
elif opt.int8:
if opt.gpu >= 0:
raise ValueError(
"Dynamic 8-bit quantization is not supported on GPU")
torch.quantization.quantize_dynamic(model, inplace=True)
model.eval()
model.generator.eval()
return fields, model, model_opt
def build_src_emb(model_opt, fields):
# Build embeddings.
if model_opt.model_type == "text":
src_field = fields["src"]
src_emb = build_embeddings(model_opt, src_field)
else:
src_emb = None
return src_emb
def build_encoder_with_embeddings(model_opt, fields):
# Build encoder.
src_emb = build_src_emb(model_opt, fields)
encoder = build_encoder(model_opt, src_emb)
return encoder, src_emb
def build_decoder_with_embeddings(
model_opt, fields, share_embeddings=False, src_emb=None
):
# Build embeddings.
tgt_field = fields["tgt"]
tgt_emb = build_embeddings(model_opt, tgt_field, for_encoder=False)
if share_embeddings:
tgt_emb.word_lut.weight = src_emb.word_lut.weight
# Build decoder.
decoder = build_decoder(model_opt, tgt_emb)
return decoder, tgt_emb
def build_task_specific_model(model_opt, fields):
# Share the embedding matrix - preprocess with share_vocab required.
if model_opt.share_embeddings:
# src/tgt vocab should be the same if `-share_vocab` is specified.
assert (
fields["src"].base_field.vocab == fields["tgt"].base_field.vocab
), "preprocess with -share_vocab if you use share_embeddings"
if model_opt.model_task == ModelTask.SEQ2SEQ:
encoder, src_emb = build_encoder_with_embeddings(model_opt, fields)
decoder, _ = build_decoder_with_embeddings(
model_opt,
fields,
share_embeddings=model_opt.share_embeddings,
src_emb=src_emb,
)
return onmt.models.NMTModel(encoder=encoder, decoder=decoder)
elif model_opt.model_task == ModelTask.LANGUAGE_MODEL:
src_emb = build_src_emb(model_opt, fields)
decoder, _ = build_decoder_with_embeddings(
model_opt, fields, share_embeddings=True, src_emb=src_emb
)
return onmt.models.LanguageModel(decoder=decoder)
else:
raise ValueError(f"No model defined for {model_opt.model_task} task")
def use_embeddings_from_checkpoint(fields, model, generator, checkpoint):
# Update vocabulary embeddings with checkpoint embeddings
logger.info("Updating vocabulary embeddings with checkpoint embeddings")
# Embedding layers
enc_emb_name = "encoder.embeddings.make_embedding.emb_luts.0.weight"
dec_emb_name = "decoder.embeddings.make_embedding.emb_luts.0.weight"
for field_name, emb_name in [("src", enc_emb_name), ("tgt", dec_emb_name)]:
if emb_name not in checkpoint["model"]:
continue
multifield = fields[field_name]
checkpoint_multifield = checkpoint["vocab"][field_name]
for (name, field), (checkpoint_name, checkpoint_field) in zip(
multifield, checkpoint_multifield
):
new_tokens = []
for i, tok in enumerate(field.vocab.itos):
if tok in checkpoint_field.vocab.stoi:
old_i = checkpoint_field.vocab.stoi[tok]
model.state_dict()[emb_name][i] = checkpoint["model"][
emb_name
][old_i]
if field_name == "tgt":
generator.state_dict()["0.weight"][i] = checkpoint[
"generator"
]["0.weight"][old_i]
generator.state_dict()["0.bias"][i] = checkpoint[
"generator"
]["0.bias"][old_i]
else:
# Just for debugging purposes
new_tokens.append(tok)
logger.info("%s: %d new tokens" % (name, len(new_tokens)))
# Remove old vocabulary associated embeddings
del checkpoint["model"][emb_name]
del checkpoint["generator"]["0.weight"], checkpoint["generator"]["0.bias"]
def build_base_model(model_opt, fields, gpu, checkpoint=None, gpu_id=None):
"""Build a model from opts.
Args:
model_opt: the option loaded from checkpoint. It's important that
the opts have been updated and validated. See
:class:`onmt.utils.parse.ArgumentParser`.
fields (dict[str, torchtext.data.Field]):
`Field` objects for the model.
gpu (bool): whether to use gpu.
checkpoint: the model gnerated by train phase, or a resumed snapshot
model from a stopped training.
gpu_id (int or NoneType): Which GPU to use.
Returns:
the NMTModel.
"""
# for back compat when attention_dropout was not defined
try:
model_opt.attention_dropout
except AttributeError:
model_opt.attention_dropout = model_opt.dropout
# Build Model
if gpu and gpu_id is not None:
device = torch.device("cuda", gpu_id)
elif gpu and not gpu_id:
device = torch.device("cuda")
elif not gpu:
device = torch.device("cpu")
model = build_task_specific_model(model_opt, fields)
# Build Generator.
if not model_opt.copy_attn:
if model_opt.generator_function == "sparsemax":
gen_func = onmt.modules.sparse_activations.LogSparsemax(dim=-1)
else:
gen_func = nn.LogSoftmax(dim=-1)
generator = nn.Sequential(
nn.Linear(model_opt.dec_rnn_size,
len(fields["tgt"].base_field.vocab)),
Cast(torch.float32),
gen_func
)
if model_opt.share_decoder_embeddings:
generator[0].weight = model.decoder.embeddings.word_lut.weight
else:
tgt_base_field = fields["tgt"].base_field
vocab_size = len(tgt_base_field.vocab)
pad_idx = tgt_base_field.vocab.stoi[tgt_base_field.pad_token]
generator = CopyGenerator(model_opt.dec_rnn_size, vocab_size, pad_idx)
if model_opt.share_decoder_embeddings:
generator.linear.weight = model.decoder.embeddings.word_lut.weight
# Load the model states from checkpoint or initialize them.
if checkpoint is None or model_opt.update_vocab:
if model_opt.param_init != 0.0:
for p in model.parameters():
p.data.uniform_(-model_opt.param_init, model_opt.param_init)
for p in generator.parameters():
p.data.uniform_(-model_opt.param_init, model_opt.param_init)
if model_opt.param_init_glorot:
for p in model.parameters():
if p.dim() > 1:
xavier_uniform_(p)
for p in generator.parameters():
if p.dim() > 1:
xavier_uniform_(p)
if hasattr(model, "encoder") and hasattr(model.encoder, "embeddings"):
model.encoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_enc)
if hasattr(model.decoder, 'embeddings'):
model.decoder.embeddings.load_pretrained_vectors(
model_opt.pre_word_vecs_dec)
if checkpoint is not None:
# This preserves backward-compat for models using customed layernorm
def fix_key(s):
s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.b_2',
r'\1.layer_norm\2.bias', s)
s = re.sub(r'(.*)\.layer_norm((_\d+)?)\.a_2',
r'\1.layer_norm\2.weight', s)
return s
checkpoint['model'] = {fix_key(k): v
for k, v in checkpoint['model'].items()}
# end of patch for backward compatibility
if model_opt.update_vocab:
# Update model embeddings with those from the checkpoint
# after initialization
use_embeddings_from_checkpoint(fields, model, generator,
checkpoint)
model.load_state_dict(checkpoint['model'], strict=False)
generator.load_state_dict(checkpoint['generator'], strict=False)
model.generator = generator
model.to(device)
if model_opt.model_dtype == 'fp16' and model_opt.optim == 'fusedadam':
model.half()
return model
def build_model(model_opt, opt, fields, checkpoint):
logger.info('Building model...')
model = build_base_model(model_opt, fields, use_gpu(opt), checkpoint)
logger.info(model)
return model