Upload PPO LunarLander-v2 trained agent tutorial
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2-tutorial.zip +3 -0
- ppo-LunarLander-v2-tutorial/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2-tutorial/data +94 -0
- ppo-LunarLander-v2-tutorial/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2-tutorial/policy.pth +3 -0
- ppo-LunarLander-v2-tutorial/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2-tutorial/system_info.txt +7 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 265.06 +/- 19.44
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fec8ccdcca0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec8ccdcd30>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec8ccdcdc0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec8ccdce50>", "_build": "<function ActorCriticPolicy._build at 0x7fec8ccdcee0>", "forward": "<function ActorCriticPolicy.forward at 0x7fec8ccdcf70>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec8cce0040>", "_predict": "<function ActorCriticPolicy._predict at 0x7fec8cce00d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec8cce0160>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec8cce01f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec8cce0280>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fec8ccd94b0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1671512267476259586, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIByZj3Ckrg/4LgHP0oAnTxH4NU7PgwQPgAAAAAAAAAAmuSpvFuSdz8Ghpa9ME/qvgjL/DwW3BC8AAAAAAAAAAAarDK99nptvLDSOL0VhQq+em3OPdoC5D4AAIA/AACAP2ZthDxIj6O65tc6s1T3dy727226zay5MwAAgD8AAIA/Mwfou6ScerutN4M8zGiUPFVZvTyrtn29AACAPwAAgD8AzRu9Kii6Py3zIL+DwYI+Fn62PN3ZGT0AAAAAAAAAAJpv4T1Y/nY/HIoxPZRuyr7UqvE9eIxevQAAAAAAAAAAmnM1vW8j3D6x0Zy9Bqygvomv1Tzbp5K8AAAAAAAAAADziZq9sFuhP042i76MKeG+NA+AvX7erb0AAAAAAAAAAABaQL02Bie8nlmoPQcwpDzL4I69zgaHPQAAgD8AAIA/GrsyPmfjFT9QcMO9pzydvvtmjT0iPiU9AAAAAAAAAAAaJMq9uJ7suR4vkjmcFx01BQ+5OxNJrLgAAIA/AACAP01yOr3AiIs/PoELvrHt8742T4C93DM7PAAAAAAAAAAAZkoJPQgemryK/k8+liAmvqg96b1GRy2/AACAPwAAgD8AeXQ92wiSvISPjb1qaKy8BT7KvWouSr4AAIA/AACAPzN/+bxj44M/MRqtvfVn476E4lG8dCoSvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxjU+k/1mcUCUhpRSlIwBbJRNYQGMAXSUR0CVyytShrWRdX2UKGgGaAloD0MID3wMVlzWcUCUhpRSlGgVTSIBaBZHQJXLSWpqASZ1fZQoaAZoCWgPQwgJFRxe0KRwQJSGlFKUaBVNFgFoFkdAlcxVBdD6WXV9lChoBmgJaA9DCBnnb0KhJ29AlIaUUpRoFU00AWgWR0CVzHtj0+TvdX2UKGgGaAloD0MIaxFRTN5Ub0CUhpRSlGgVTQwBaBZHQJXNWv4dp7F1fZQoaAZoCWgPQwjkh0ojJiRxQJSGlFKUaBVNMgFoFkdAlc1XV5KODXV9lChoBmgJaA9DCLBVgsWhpHBAlIaUUpRoFU1GAWgWR0CVzey0rsjWdX2UKGgGaAloD0MI3qzB+2otckCUhpRSlGgVTWQBaBZHQJXOJjNIK+l1fZQoaAZoCWgPQwhRhxVu+f5qQJSGlFKUaBVNJwFoFkdAlc8a5CngpHV9lChoBmgJaA9DCGQke4Ra/3FAlIaUUpRoFU0WAWgWR0CVz1P91loUdX2UKGgGaAloD0MI4V0u4rvdbUCUhpRSlGgVTSgBaBZHQJXP2sLfDUF1fZQoaAZoCWgPQwiQMXctoRJxQJSGlFKUaBVNhgFoFkdAldBX3L3bmHV9lChoBmgJaA9DCEgzFk1nXXJAlIaUUpRoFU09AWgWR0CV0KLRrrPddX2UKGgGaAloD0MIwXCuYcZHc0CUhpRSlGgVTQMBaBZHQJXSM8U21lZ1fZQoaAZoCWgPQwhODp90orZxQJSGlFKUaBVNAgFoFkdAldK6JqIrOXV9lChoBmgJaA9DCDATRUhdn3BAlIaUUpRoFU0IAWgWR0CV0wYTj/+9dX2UKGgGaAloD0MIrprniHzEcECUhpRSlGgVTTcBaBZHQJXTz0I1LrZ1fZQoaAZoCWgPQwhorz4eeq5vQJSGlFKUaBVN3wFoFkdAldQTxLCemXV9lChoBmgJaA9DCNFcp5FWHnBAlIaUUpRoFU0nAWgWR0CV1QXZoPCmdX2UKGgGaAloD0MIumddo2XwbUCUhpRSlGgVTS4BaBZHQJXVG6PKdQR1fZQoaAZoCWgPQwi/t+nPvmxyQJSGlFKUaBVL/GgWR0CV1WSUkfLcdX2UKGgGaAloD0MIih74GGzzcECUhpRSlGgVTQcBaBZHQJXVeyv9tMx1fZQoaAZoCWgPQwg8hzJUxTw9QJSGlFKUaBVL62gWR0CV1cz/IbOvdX2UKGgGaAloD0MI39xfPa6UckCUhpRSlGgVTUEBaBZHQJXWfDvVmSR1fZQoaAZoCWgPQwj1nzU/vjNyQJSGlFKUaBVNBgFoFkdAldaxLTQVsXV9lChoBmgJaA9DCFGhurl4mnJAlIaUUpRoFU1JAWgWR0CV1rmplz2fdX2UKGgGaAloD0MImL9C5srbbECUhpRSlGgVTSEBaBZHQJXXxfzBhx51fZQoaAZoCWgPQwh+w0SDVExyQJSGlFKUaBVNSAFoFkdAldlDXarWAnV9lChoBmgJaA9DCPyrx30rYm9AlIaUUpRoFU1JAWgWR0CV2ZrX18LKdX2UKGgGaAloD0MIowOSsC8ucECUhpRSlGgVTQ8BaBZHQJXZofGMn7Z1fZQoaAZoCWgPQwh/Z3v0hh9PQJSGlFKUaBVL3GgWR0CV20sxfv4NdX2UKGgGaAloD0MIUWuad5zYcUCUhpRSlGgVTTsBaBZHQJXbYlme18d1fZQoaAZoCWgPQwj99nXgHDlyQJSGlFKUaBVNPAFoFkdAlduv24/eL3V9lChoBmgJaA9DCMbbSq+N53FAlIaUUpRoFUv7aBZHQJXcnY150KZ1fZQoaAZoCWgPQwhHcY46uv9uQJSGlFKUaBVNDgFoFkdAldy8dcSoO3V9lChoBmgJaA9DCFMEOL3LUnFAlIaUUpRoFU1EAWgWR0CV3Mc1O0swdX2UKGgGaAloD0MIste7P96IUUCUhpRSlGgVS+FoFkdAldzZYcNpd3V9lChoBmgJaA9DCJmghm+h43BAlIaUUpRoFU1DAWgWR0CV3PznzQNTdX2UKGgGaAloD0MIW7VrQpqockCUhpRSlGgVTTMBaBZHQJXdW/0ulGh1fZQoaAZoCWgPQwgYmBWKtDVwQJSGlFKUaBVNOgFoFkdAld2RU70WdnV9lChoBmgJaA9DCHtKzok9SXBAlIaUUpRoFU0qAWgWR0CV3pwazeGgdX2UKGgGaAloD0MImdTQBmC5b0CUhpRSlGgVTVUBaBZHQJXfiL3sXzl1fZQoaAZoCWgPQwi2SNqNvgdtQJSGlFKUaBVNKAFoFkdAleF8zl90BHV9lChoBmgJaA9DCEvqBDSR13JAlIaUUpRoFU1uAWgWR0CV9MIJJGvwdX2UKGgGaAloD0MICD4GK87bcECUhpRSlGgVTTQBaBZHQJX1GdFvybx1fZQoaAZoCWgPQwgId2ft9iVyQJSGlFKUaBVNAwFoFkdAlfVs41gpjXV9lChoBmgJaA9DCL9iDRc5mXBAlIaUUpRoFU1GAWgWR0CV9bGqxTsIdX2UKGgGaAloD0MIHy457hSlcECUhpRSlGgVTRoBaBZHQJX2jT/hl191fZQoaAZoCWgPQwijkjoBzc9uQJSGlFKUaBVL7GgWR0CV9viZv1lHdX2UKGgGaAloD0MIQ46tZ4i1cECUhpRSlGgVTQoBaBZHQJX3bZHuqm11fZQoaAZoCWgPQwha9E4FHOJzQJSGlFKUaBVNJgFoFkdAlfgdxMnJDHV9lChoBmgJaA9DCII3pFHBnnFAlIaUUpRoFU1VAWgWR0CV+CseGO+7dX2UKGgGaAloD0MIweEFESnTcUCUhpRSlGgVTUwBaBZHQJX5SX6ZYxN1fZQoaAZoCWgPQwi05sdf2llxQJSGlFKUaBVNVAFoFkdAlfmsdT5wfnV9lChoBmgJaA9DCNwsXiwMI21AlIaUUpRoFU0/AWgWR0CV+2gFotcwdX2UKGgGaAloD0MIM6SK4tUgbUCUhpRSlGgVS/RoFkdAlfxYMa0hNnV9lChoBmgJaA9DCNCzWfV5K3FAlIaUUpRoFU2EAWgWR0CV/F4QBgeBdX2UKGgGaAloD0MIqp7MP/pWNECUhpRSlGgVS9VoFkdAlf2rvCuU2XV9lChoBmgJaA9DCJzbhHvlbW1AlIaUUpRoFU0VAWgWR0CV/eSS/0uldX2UKGgGaAloD0MI+fNtwVJWb0CUhpRSlGgVTdgBaBZHQJX95hCtzS11fZQoaAZoCWgPQwh6Nqs+FzVwQJSGlFKUaBVNFQFoFkdAlf40yxiXpnV9lChoBmgJaA9DCAfRWtFmdG9AlIaUUpRoFU2QAWgWR0CV/yMzdk8SdX2UKGgGaAloD0MIBOYhU76rcUCUhpRSlGgVTRoBaBZHQJYAdxBE8aJ1fZQoaAZoCWgPQwjaA63A0GBxQJSGlFKUaBVNYAFoFkdAlgCuMERranV9lChoBmgJaA9DCL3IBPwaEnFAlIaUUpRoFU04AWgWR0CWAPDnNgSfdX2UKGgGaAloD0MIx3+BIAAecUCUhpRSlGgVTS0BaBZHQJYBn90ihWZ1fZQoaAZoCWgPQwi9HeG04PpuQJSGlFKUaBVNOwFoFkdAlgH4wVTJhnV9lChoBmgJaA9DCMOBkCxgOEZAlIaUUpRoFUvAaBZHQJYCEm7aqS51fZQoaAZoCWgPQwgdO6jEtfZwQJSGlFKUaBVNMQFoFkdAlgKqHXVbzXV9lChoBmgJaA9DCN1FmKJc+21AlIaUUpRoFU00AWgWR0CWAw25QP7OdX2UKGgGaAloD0MIj8cMVMYPcUCUhpRSlGgVTQkBaBZHQJYDUG4ZuQ91fZQoaAZoCWgPQwgKoBhZcjNxQJSGlFKUaBVN0AFoFkdAlgPoVVPva3V9lChoBmgJaA9DCB5v8lu0ZnNAlIaUUpRoFUvvaBZHQJYETCO3lS11fZQoaAZoCWgPQwidaFchZaJtQJSGlFKUaBVNHAFoFkdAlgR0DZDiO3V9lChoBmgJaA9DCG0bRkFwr3BAlIaUUpRoFU0IAWgWR0CWBQ8YyfthdX2UKGgGaAloD0MIyqMbYRH8cECUhpRSlGgVTSoBaBZHQJYF8ovzvql1fZQoaAZoCWgPQwhVv9L5cAZzQJSGlFKUaBVNNgFoFkdAlgaJ+MIeHXV9lChoBmgJaA9DCKJGIcnsx3JAlIaUUpRoFU0oAWgWR0CWBxpuMuOCdX2UKGgGaAloD0MI6SgHs4m3b0CUhpRSlGgVTQ4BaBZHQJYH2c4HX3B1fZQoaAZoCWgPQwiNXg1QGmhwQJSGlFKUaBVNBAFoFkdAlgkjqnm7rnV9lChoBmgJaA9DCHP2zmgrqnBAlIaUUpRoFUvvaBZHQJYJNJbt7a91fZQoaAZoCWgPQwgh5SfVPtpxQJSGlFKUaBVNMQFoFkdAlgoaC6H0snV9lChoBmgJaA9DCBlZMsdyiHBAlIaUUpRoFU1hAWgWR0CWClYK6WgOdX2UKGgGaAloD0MIu0OKAZJscECUhpRSlGgVTS4BaBZHQJYKZ3LV4HJ1fZQoaAZoCWgPQwi5Fi1A27huQJSGlFKUaBVNFgFoFkdAlgrpQpF1CHV9lChoBmgJaA9DCDSEY5Y9vW5AlIaUUpRoFU0TAWgWR0CWCxyauwHJdX2UKGgGaAloD0MImDWxwBezcECUhpRSlGgVTXQBaBZHQJYLUdV/+bV1fZQoaAZoCWgPQwhhUKbR5OJsQJSGlFKUaBVNDQFoFkdAlgwINy5qd3V9lChoBmgJaA9DCIrNx7UhX3BAlIaUUpRoFU04AWgWR0CWDNEuQIUrdX2UKGgGaAloD0MIBtfc0X+0bUCUhpRSlGgVS/NoFkdAlg0p5Rjz7XV9lChoBmgJaA9DCOymlNdK7HBAlIaUUpRoFU0vAWgWR0CWDSsyzolldX2UKGgGaAloD0MIBTOmYA2hbkCUhpRSlGgVTRABaBZHQJYOfY4ACGN1fZQoaAZoCWgPQwgR5QtaSHRCQJSGlFKUaBVLzmgWR0CWEBfjS5RTdX2UKGgGaAloD0MIXwt6bwytc0CUhpRSlGgVTRcBaBZHQJYRrarWAgB1fZQoaAZoCWgPQwiUSnhCrw5wQJSGlFKUaBVNrQFoFkdAlhH9ITXarXV9lChoBmgJaA9DCHJr0m2JRHJAlIaUUpRoFU0EAWgWR0CWEmCfpUxVdX2UKGgGaAloD0MIeawZGSRQcECUhpRSlGgVTW8BaBZHQJYSfCrLhaV1fZQoaAZoCWgPQwjSU+QQsdNxQJSGlFKUaBVNMQFoFkdAlhKp1A7gbnV9lChoBmgJaA9DCKA4gH6fVXNAlIaUUpRoFU0fAWgWR0CWEx82aUiZdX2UKGgGaAloD0MIe4UF94MdbkCUhpRSlGgVTW8BaBZHQJYTO4TbnHN1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2-tutorial.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b28d34317bedff5e2b77727693ec96a8b6e04a80e2be3dda3157707cc22ea9de
|
3 |
+
size 147202
|
ppo-LunarLander-v2-tutorial/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.6.2
|
ppo-LunarLander-v2-tutorial/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fec8ccdcca0>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fec8ccdcd30>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fec8ccdcdc0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fec8ccdce50>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fec8ccdcee0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fec8ccdcf70>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fec8cce0040>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fec8cce00d0>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fec8cce0160>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fec8cce01f0>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fec8cce0280>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7fec8ccd94b0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 1015808,
|
46 |
+
"_total_timesteps": 1000000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1671512267476259586,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAIByZj3Ckrg/4LgHP0oAnTxH4NU7PgwQPgAAAAAAAAAAmuSpvFuSdz8Ghpa9ME/qvgjL/DwW3BC8AAAAAAAAAAAarDK99nptvLDSOL0VhQq+em3OPdoC5D4AAIA/AACAP2ZthDxIj6O65tc6s1T3dy727226zay5MwAAgD8AAIA/Mwfou6ScerutN4M8zGiUPFVZvTyrtn29AACAPwAAgD8AzRu9Kii6Py3zIL+DwYI+Fn62PN3ZGT0AAAAAAAAAAJpv4T1Y/nY/HIoxPZRuyr7UqvE9eIxevQAAAAAAAAAAmnM1vW8j3D6x0Zy9Bqygvomv1Tzbp5K8AAAAAAAAAADziZq9sFuhP042i76MKeG+NA+AvX7erb0AAAAAAAAAAABaQL02Bie8nlmoPQcwpDzL4I69zgaHPQAAgD8AAIA/GrsyPmfjFT9QcMO9pzydvvtmjT0iPiU9AAAAAAAAAAAaJMq9uJ7suR4vkjmcFx01BQ+5OxNJrLgAAIA/AACAP01yOr3AiIs/PoELvrHt8742T4C93DM7PAAAAAAAAAAAZkoJPQgemryK/k8+liAmvqg96b1GRy2/AACAPwAAgD8AeXQ92wiSvISPjb1qaKy8BT7KvWouSr4AAIA/AACAPzN/+bxj44M/MRqtvfVn476E4lG8dCoSvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVdBAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIxjU+k/1mcUCUhpRSlIwBbJRNYQGMAXSUR0CVyytShrWRdX2UKGgGaAloD0MID3wMVlzWcUCUhpRSlGgVTSIBaBZHQJXLSWpqASZ1fZQoaAZoCWgPQwgJFRxe0KRwQJSGlFKUaBVNFgFoFkdAlcxVBdD6WXV9lChoBmgJaA9DCBnnb0KhJ29AlIaUUpRoFU00AWgWR0CVzHtj0+TvdX2UKGgGaAloD0MIaxFRTN5Ub0CUhpRSlGgVTQwBaBZHQJXNWv4dp7F1fZQoaAZoCWgPQwjkh0ojJiRxQJSGlFKUaBVNMgFoFkdAlc1XV5KODXV9lChoBmgJaA9DCLBVgsWhpHBAlIaUUpRoFU1GAWgWR0CVzey0rsjWdX2UKGgGaAloD0MI3qzB+2otckCUhpRSlGgVTWQBaBZHQJXOJjNIK+l1fZQoaAZoCWgPQwhRhxVu+f5qQJSGlFKUaBVNJwFoFkdAlc8a5CngpHV9lChoBmgJaA9DCGQke4Ra/3FAlIaUUpRoFU0WAWgWR0CVz1P91loUdX2UKGgGaAloD0MI4V0u4rvdbUCUhpRSlGgVTSgBaBZHQJXP2sLfDUF1fZQoaAZoCWgPQwiQMXctoRJxQJSGlFKUaBVNhgFoFkdAldBX3L3bmHV9lChoBmgJaA9DCEgzFk1nXXJAlIaUUpRoFU09AWgWR0CV0KLRrrPddX2UKGgGaAloD0MIwXCuYcZHc0CUhpRSlGgVTQMBaBZHQJXSM8U21lZ1fZQoaAZoCWgPQwhODp90orZxQJSGlFKUaBVNAgFoFkdAldK6JqIrOXV9lChoBmgJaA9DCDATRUhdn3BAlIaUUpRoFU0IAWgWR0CV0wYTj/+9dX2UKGgGaAloD0MIrprniHzEcECUhpRSlGgVTTcBaBZHQJXTz0I1LrZ1fZQoaAZoCWgPQwhorz4eeq5vQJSGlFKUaBVN3wFoFkdAldQTxLCemXV9lChoBmgJaA9DCNFcp5FWHnBAlIaUUpRoFU0nAWgWR0CV1QXZoPCmdX2UKGgGaAloD0MIumddo2XwbUCUhpRSlGgVTS4BaBZHQJXVG6PKdQR1fZQoaAZoCWgPQwi/t+nPvmxyQJSGlFKUaBVL/GgWR0CV1WSUkfLcdX2UKGgGaAloD0MIih74GGzzcECUhpRSlGgVTQcBaBZHQJXVeyv9tMx1fZQoaAZoCWgPQwg8hzJUxTw9QJSGlFKUaBVL62gWR0CV1cz/IbOvdX2UKGgGaAloD0MI39xfPa6UckCUhpRSlGgVTUEBaBZHQJXWfDvVmSR1fZQoaAZoCWgPQwj1nzU/vjNyQJSGlFKUaBVNBgFoFkdAldaxLTQVsXV9lChoBmgJaA9DCFGhurl4mnJAlIaUUpRoFU1JAWgWR0CV1rmplz2fdX2UKGgGaAloD0MImL9C5srbbECUhpRSlGgVTSEBaBZHQJXXxfzBhx51fZQoaAZoCWgPQwh+w0SDVExyQJSGlFKUaBVNSAFoFkdAldlDXarWAnV9lChoBmgJaA9DCPyrx30rYm9AlIaUUpRoFU1JAWgWR0CV2ZrX18LKdX2UKGgGaAloD0MIowOSsC8ucECUhpRSlGgVTQ8BaBZHQJXZofGMn7Z1fZQoaAZoCWgPQwh/Z3v0hh9PQJSGlFKUaBVL3GgWR0CV20sxfv4NdX2UKGgGaAloD0MIUWuad5zYcUCUhpRSlGgVTTsBaBZHQJXbYlme18d1fZQoaAZoCWgPQwj99nXgHDlyQJSGlFKUaBVNPAFoFkdAlduv24/eL3V9lChoBmgJaA9DCMbbSq+N53FAlIaUUpRoFUv7aBZHQJXcnY150KZ1fZQoaAZoCWgPQwhHcY46uv9uQJSGlFKUaBVNDgFoFkdAldy8dcSoO3V9lChoBmgJaA9DCFMEOL3LUnFAlIaUUpRoFU1EAWgWR0CV3Mc1O0swdX2UKGgGaAloD0MIste7P96IUUCUhpRSlGgVS+FoFkdAldzZYcNpd3V9lChoBmgJaA9DCJmghm+h43BAlIaUUpRoFU1DAWgWR0CV3PznzQNTdX2UKGgGaAloD0MIW7VrQpqockCUhpRSlGgVTTMBaBZHQJXdW/0ulGh1fZQoaAZoCWgPQwgYmBWKtDVwQJSGlFKUaBVNOgFoFkdAld2RU70WdnV9lChoBmgJaA9DCHtKzok9SXBAlIaUUpRoFU0qAWgWR0CV3pwazeGgdX2UKGgGaAloD0MImdTQBmC5b0CUhpRSlGgVTVUBaBZHQJXfiL3sXzl1fZQoaAZoCWgPQwi2SNqNvgdtQJSGlFKUaBVNKAFoFkdAleF8zl90BHV9lChoBmgJaA9DCEvqBDSR13JAlIaUUpRoFU1uAWgWR0CV9MIJJGvwdX2UKGgGaAloD0MICD4GK87bcECUhpRSlGgVTTQBaBZHQJX1GdFvybx1fZQoaAZoCWgPQwgId2ft9iVyQJSGlFKUaBVNAwFoFkdAlfVs41gpjXV9lChoBmgJaA9DCL9iDRc5mXBAlIaUUpRoFU1GAWgWR0CV9bGqxTsIdX2UKGgGaAloD0MIHy457hSlcECUhpRSlGgVTRoBaBZHQJX2jT/hl191fZQoaAZoCWgPQwijkjoBzc9uQJSGlFKUaBVL7GgWR0CV9viZv1lHdX2UKGgGaAloD0MIQ46tZ4i1cECUhpRSlGgVTQoBaBZHQJX3bZHuqm11fZQoaAZoCWgPQwha9E4FHOJzQJSGlFKUaBVNJgFoFkdAlfgdxMnJDHV9lChoBmgJaA9DCII3pFHBnnFAlIaUUpRoFU1VAWgWR0CV+CseGO+7dX2UKGgGaAloD0MIweEFESnTcUCUhpRSlGgVTUwBaBZHQJX5SX6ZYxN1fZQoaAZoCWgPQwi05sdf2llxQJSGlFKUaBVNVAFoFkdAlfmsdT5wfnV9lChoBmgJaA9DCNwsXiwMI21AlIaUUpRoFU0/AWgWR0CV+2gFotcwdX2UKGgGaAloD0MIM6SK4tUgbUCUhpRSlGgVS/RoFkdAlfxYMa0hNnV9lChoBmgJaA9DCNCzWfV5K3FAlIaUUpRoFU2EAWgWR0CV/F4QBgeBdX2UKGgGaAloD0MIqp7MP/pWNECUhpRSlGgVS9VoFkdAlf2rvCuU2XV9lChoBmgJaA9DCJzbhHvlbW1AlIaUUpRoFU0VAWgWR0CV/eSS/0uldX2UKGgGaAloD0MI+fNtwVJWb0CUhpRSlGgVTdgBaBZHQJX95hCtzS11fZQoaAZoCWgPQwh6Nqs+FzVwQJSGlFKUaBVNFQFoFkdAlf40yxiXpnV9lChoBmgJaA9DCAfRWtFmdG9AlIaUUpRoFU2QAWgWR0CV/yMzdk8SdX2UKGgGaAloD0MIBOYhU76rcUCUhpRSlGgVTRoBaBZHQJYAdxBE8aJ1fZQoaAZoCWgPQwjaA63A0GBxQJSGlFKUaBVNYAFoFkdAlgCuMERranV9lChoBmgJaA9DCL3IBPwaEnFAlIaUUpRoFU04AWgWR0CWAPDnNgSfdX2UKGgGaAloD0MIx3+BIAAecUCUhpRSlGgVTS0BaBZHQJYBn90ihWZ1fZQoaAZoCWgPQwi9HeG04PpuQJSGlFKUaBVNOwFoFkdAlgH4wVTJhnV9lChoBmgJaA9DCMOBkCxgOEZAlIaUUpRoFUvAaBZHQJYCEm7aqS51fZQoaAZoCWgPQwgdO6jEtfZwQJSGlFKUaBVNMQFoFkdAlgKqHXVbzXV9lChoBmgJaA9DCN1FmKJc+21AlIaUUpRoFU00AWgWR0CWAw25QP7OdX2UKGgGaAloD0MIj8cMVMYPcUCUhpRSlGgVTQkBaBZHQJYDUG4ZuQ91fZQoaAZoCWgPQwgKoBhZcjNxQJSGlFKUaBVN0AFoFkdAlgPoVVPva3V9lChoBmgJaA9DCB5v8lu0ZnNAlIaUUpRoFUvvaBZHQJYETCO3lS11fZQoaAZoCWgPQwidaFchZaJtQJSGlFKUaBVNHAFoFkdAlgR0DZDiO3V9lChoBmgJaA9DCG0bRkFwr3BAlIaUUpRoFU0IAWgWR0CWBQ8YyfthdX2UKGgGaAloD0MIyqMbYRH8cECUhpRSlGgVTSoBaBZHQJYF8ovzvql1fZQoaAZoCWgPQwhVv9L5cAZzQJSGlFKUaBVNNgFoFkdAlgaJ+MIeHXV9lChoBmgJaA9DCKJGIcnsx3JAlIaUUpRoFU0oAWgWR0CWBxpuMuOCdX2UKGgGaAloD0MI6SgHs4m3b0CUhpRSlGgVTQ4BaBZHQJYH2c4HX3B1fZQoaAZoCWgPQwiNXg1QGmhwQJSGlFKUaBVNBAFoFkdAlgkjqnm7rnV9lChoBmgJaA9DCHP2zmgrqnBAlIaUUpRoFUvvaBZHQJYJNJbt7a91fZQoaAZoCWgPQwgh5SfVPtpxQJSGlFKUaBVNMQFoFkdAlgoaC6H0snV9lChoBmgJaA9DCBlZMsdyiHBAlIaUUpRoFU1hAWgWR0CWClYK6WgOdX2UKGgGaAloD0MIu0OKAZJscECUhpRSlGgVTS4BaBZHQJYKZ3LV4HJ1fZQoaAZoCWgPQwi5Fi1A27huQJSGlFKUaBVNFgFoFkdAlgrpQpF1CHV9lChoBmgJaA9DCDSEY5Y9vW5AlIaUUpRoFU0TAWgWR0CWCxyauwHJdX2UKGgGaAloD0MImDWxwBezcECUhpRSlGgVTXQBaBZHQJYLUdV/+bV1fZQoaAZoCWgPQwhhUKbR5OJsQJSGlFKUaBVNDQFoFkdAlgwINy5qd3V9lChoBmgJaA9DCIrNx7UhX3BAlIaUUpRoFU04AWgWR0CWDNEuQIUrdX2UKGgGaAloD0MIBtfc0X+0bUCUhpRSlGgVS/NoFkdAlg0p5Rjz7XV9lChoBmgJaA9DCOymlNdK7HBAlIaUUpRoFU0vAWgWR0CWDSsyzolldX2UKGgGaAloD0MIBTOmYA2hbkCUhpRSlGgVTRABaBZHQJYOfY4ACGN1fZQoaAZoCWgPQwgR5QtaSHRCQJSGlFKUaBVLzmgWR0CWEBfjS5RTdX2UKGgGaAloD0MIXwt6bwytc0CUhpRSlGgVTRcBaBZHQJYRrarWAgB1fZQoaAZoCWgPQwiUSnhCrw5wQJSGlFKUaBVNrQFoFkdAlhH9ITXarXV9lChoBmgJaA9DCHJr0m2JRHJAlIaUUpRoFU0EAWgWR0CWEmCfpUxVdX2UKGgGaAloD0MIeawZGSRQcECUhpRSlGgVTW8BaBZHQJYSfCrLhaV1fZQoaAZoCWgPQwjSU+QQsdNxQJSGlFKUaBVNMQFoFkdAlhKp1A7gbnV9lChoBmgJaA9DCKA4gH6fVXNAlIaUUpRoFU0fAWgWR0CWEx82aUiZdX2UKGgGaAloD0MIe4UF94MdbkCUhpRSlGgVTW8BaBZHQJYTO4TbnHN1ZS4="
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 248,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2-tutorial/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:811156bf0a56563fddc45ea8ee711fd08675f591a7a5cb2176d9b612ba3531cc
|
3 |
+
size 87929
|
ppo-LunarLander-v2-tutorial/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7a75df274dfec2f5a5ff5acc617f999f372db6f538f544dbff34edaee8ee269b
|
3 |
+
size 43201
|
ppo-LunarLander-v2-tutorial/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2-tutorial/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
|
2 |
+
Python: 3.8.16
|
3 |
+
Stable-Baselines3: 1.6.2
|
4 |
+
PyTorch: 1.13.0+cu116
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
Binary file (218 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 265.06432048118387, "std_reward": 19.437933460242373, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-20T05:24:36.997292"}
|