Update README
Browse files
README.md
CHANGED
@@ -26,3 +26,24 @@ tokenizer = AutoTokenizer.from_pretrained("saikatc/NatGen")
|
|
26 |
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained("saikatc/NatGen")
|
28 |
```
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
26 |
|
27 |
model = AutoModelForSeq2SeqLM.from_pretrained("saikatc/NatGen")
|
28 |
```
|
29 |
+
NatGen: Generative Pre-training by “Naturalizing” Source Code [[`Paper Link`]](https://dl.acm.org/doi/abs/10.1145/3540250.3549162),[[`Code Repo`]](),[[`Slide`]](https://docs.google.com/presentation/d/1T6kjiohAAR1YvcNvTASR94HptA3xHGCl/edit?usp=sharing&ouid=111755026725574085503&rtpof=true&sd=true).
|
30 |
+
For citation,
|
31 |
+
```
|
32 |
+
@inproceedings{chakraborty2022natgen,
|
33 |
+
author = {Chakraborty, Saikat and Ahmed, Toufique and Ding, Yangruibo and Devanbu, Premkumar T. and Ray, Baishakhi},
|
34 |
+
title = {NatGen: Generative Pre-Training by “Naturalizing” Source Code},
|
35 |
+
year = {2022},
|
36 |
+
isbn = {9781450394130},
|
37 |
+
publisher = {Association for Computing Machinery},
|
38 |
+
address = {New York, NY, USA},
|
39 |
+
url = {https://doi.org/10.1145/3540250.3549162},
|
40 |
+
doi = {10.1145/3540250.3549162},
|
41 |
+
booktitle = {Proceedings of the 30th ACM Joint European Software Engineering Conference and Symposium on the Foundations of Software Engineering},
|
42 |
+
pages = {18–30},
|
43 |
+
numpages = {13},
|
44 |
+
keywords = {Neural Network, Semantic Preserving Transformation, Source Code Transformer, Source Code Pre-training},
|
45 |
+
location = {Singapore, Singapore},
|
46 |
+
series = {ESEC/FSE 2022}
|
47 |
+
}
|
48 |
+
```
|
49 |
+
|