Adds new models
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .DS_Store +0 -0
- ggml-base-encoder.mlmodelc.zip +1 -1
- ggml-large-encoder.mlmodelc.zip → ggml-base-encoder.mlmodelc/analytics/coremldata.bin +2 -2
- ggml-large.bin → ggml-base-encoder.mlmodelc/coremldata.bin +2 -2
- ggml-base-encoder.mlmodelc/metadata.json +64 -0
- ggml-base-encoder.mlmodelc/model.mil +393 -0
- ggml-base-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-base.en-encoder.mlmodelc.zip +1 -1
- ggml-base.en-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-base.en-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-base.en-encoder.mlmodelc/metadata.json +64 -0
- ggml-base.en-encoder.mlmodelc/model.mil +393 -0
- ggml-base.en-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-large-v1-encoder.mlmodelc.zip +2 -2
- ggml-large-v1-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-large-v1-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-large-v1-encoder.mlmodelc/metadata.json +65 -0
- ggml-large-v1-encoder.mlmodelc/model.mil +0 -0
- ggml-large-v1-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-large-v2-encoder.mlmodelc.zip +2 -2
- ggml-large-v2-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-large-v2-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-large-v2-encoder.mlmodelc/metadata.json +65 -0
- ggml-large-v2-encoder.mlmodelc/model.mil +0 -0
- ggml-large-v2-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-large-v3-encoder.mlmodelc.zip +3 -0
- ggml-large-v3-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-large-v3-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-large-v3-encoder.mlmodelc/metadata.json +65 -0
- ggml-large-v3-encoder.mlmodelc/model.mil +0 -0
- ggml-large-v3-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-medium-encoder.mlmodelc.zip +1 -1
- ggml-medium-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-medium-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-medium-encoder.mlmodelc/metadata.json +64 -0
- ggml-medium-encoder.mlmodelc/model.mil +0 -0
- ggml-medium-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-medium.en-encoder.mlmodelc.zip +1 -1
- ggml-medium.en-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-medium.en-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-medium.en-encoder.mlmodelc/metadata.json +64 -0
- ggml-medium.en-encoder.mlmodelc/model.mil +0 -0
- ggml-medium.en-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-small-encoder.mlmodelc.zip +1 -1
- ggml-small-encoder.mlmodelc/analytics/coremldata.bin +3 -0
- ggml-small-encoder.mlmodelc/coremldata.bin +3 -0
- ggml-small-encoder.mlmodelc/metadata.json +64 -0
- ggml-small-encoder.mlmodelc/model.mil +0 -0
- ggml-small-encoder.mlmodelc/weights/weight.bin +3 -0
- ggml-small.en-encoder.mlmodelc.zip +1 -1
.DS_Store
ADDED
Binary file (14.3 kB). View file
|
|
ggml-base-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 37922638
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cf9278264a9e0f56a6649ca10ab2cde81f6bfe86133a1f08de15006c269cd39
|
3 |
size 37922638
|
ggml-large-encoder.mlmodelc.zip → ggml-base-encoder.mlmodelc/analytics/coremldata.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2441ae34fc7d12946dba7b63379063e856ffc7c3e11ba5f7533efb1450562ca6
|
3 |
+
size 207
|
ggml-large.bin → ggml-base-encoder.mlmodelc/coremldata.bin
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-base-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 36,
|
23 |
+
"Matmul" : 12,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 6,
|
27 |
+
"Add" : 13,
|
28 |
+
"LayerNorm" : 13,
|
29 |
+
"Mul" : 12,
|
30 |
+
"Transpose" : 25,
|
31 |
+
"Gelu" : 8,
|
32 |
+
"Reshape" : 24
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"watchOS" : "8.0",
|
40 |
+
"iOS" : "15.0",
|
41 |
+
"macCatalyst" : "15.0"
|
42 |
+
},
|
43 |
+
"modelType" : {
|
44 |
+
"name" : "MLModelType_mlProgram"
|
45 |
+
},
|
46 |
+
"userDefinedMetadata" : {
|
47 |
+
|
48 |
+
},
|
49 |
+
"inputSchema" : [
|
50 |
+
{
|
51 |
+
"hasShapeFlexibility" : "0",
|
52 |
+
"isOptional" : "0",
|
53 |
+
"dataType" : "Float32",
|
54 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
55 |
+
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 80, 3000]",
|
57 |
+
"name" : "logmel_data",
|
58 |
+
"type" : "MultiArray"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"generatedClassName" : "coreml_encoder_base",
|
62 |
+
"method" : "predict"
|
63 |
+
}
|
64 |
+
]
|
ggml-base-encoder.mlmodelc/model.mil
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "4.28.4"}, {"coremlc-version", "1436.100.10"}})]
|
3 |
+
{
|
4 |
+
func main<ios15>(tensor<fp32, [1, 80, 3000]> logmel_data) {
|
5 |
+
tensor<int32, []> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, []>(1)];
|
6 |
+
tensor<int32, [1]> var_28 = const()[name = tensor<string, []>("op_28"), val = tensor<int32, [1]>([1])];
|
7 |
+
tensor<int32, [1]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [1]>([1])];
|
8 |
+
tensor<string, []> var_32_pad_type_0 = const()[name = tensor<string, []>("op_32_pad_type_0"), val = tensor<string, []>("custom")];
|
9 |
+
tensor<int32, [2]> var_32_pad_0 = const()[name = tensor<string, []>("op_32_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
10 |
+
tensor<string, []> logmel_data_to_fp16_dtype_0 = const()[name = tensor<string, []>("logmel_data_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
11 |
+
tensor<fp16, [512, 80, 3]> weight_3_to_fp16 = const()[name = tensor<string, []>("weight_3_to_fp16"), val = tensor<fp16, [512, 80, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
12 |
+
tensor<fp16, [512]> bias_3_to_fp16 = const()[name = tensor<string, []>("bias_3_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(245888)))];
|
13 |
+
tensor<fp16, [1, 80, 3000]> cast_187 = cast(dtype = logmel_data_to_fp16_dtype_0, x = logmel_data);
|
14 |
+
tensor<fp16, [1, 512, 3000]> var_32_cast = conv(bias = bias_3_to_fp16, dilations = var_30, groups = var_20, pad = var_32_pad_0, pad_type = var_32_pad_type_0, strides = var_28, weight = weight_3_to_fp16, x = cast_187);
|
15 |
+
tensor<string, []> input_1_mode_0 = const()[name = tensor<string, []>("input_1_mode_0"), val = tensor<string, []>("EXACT")];
|
16 |
+
tensor<fp16, [1, 512, 3000]> input_1_cast = gelu(mode = input_1_mode_0, x = var_32_cast);
|
17 |
+
tensor<int32, []> var_36 = const()[name = tensor<string, []>("op_36"), val = tensor<int32, []>(1)];
|
18 |
+
tensor<int32, [1]> var_45 = const()[name = tensor<string, []>("op_45"), val = tensor<int32, [1]>([2])];
|
19 |
+
tensor<int32, [1]> var_47 = const()[name = tensor<string, []>("op_47"), val = tensor<int32, [1]>([1])];
|
20 |
+
tensor<string, []> var_49_pad_type_0 = const()[name = tensor<string, []>("op_49_pad_type_0"), val = tensor<string, []>("custom")];
|
21 |
+
tensor<int32, [2]> var_49_pad_0 = const()[name = tensor<string, []>("op_49_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
22 |
+
tensor<fp16, [512, 512, 3]> weight_7_to_fp16 = const()[name = tensor<string, []>("weight_7_to_fp16"), val = tensor<fp16, [512, 512, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(246976)))];
|
23 |
+
tensor<fp16, [512]> bias_7_to_fp16 = const()[name = tensor<string, []>("bias_7_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1819904)))];
|
24 |
+
tensor<fp16, [1, 512, 1500]> var_49_cast = conv(bias = bias_7_to_fp16, dilations = var_47, groups = var_36, pad = var_49_pad_0, pad_type = var_49_pad_type_0, strides = var_45, weight = weight_7_to_fp16, x = input_1_cast);
|
25 |
+
tensor<string, []> x_3_mode_0 = const()[name = tensor<string, []>("x_3_mode_0"), val = tensor<string, []>("EXACT")];
|
26 |
+
tensor<fp16, [1, 512, 1500]> x_3_cast = gelu(mode = x_3_mode_0, x = var_49_cast);
|
27 |
+
tensor<int32, [3]> var_54 = const()[name = tensor<string, []>("op_54"), val = tensor<int32, [3]>([0, 2, 1])];
|
28 |
+
tensor<fp16, [1500, 512]> positional_embedding_to_fp16 = const()[name = tensor<string, []>("positional_embedding_to_fp16"), val = tensor<fp16, [1500, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1820992)))];
|
29 |
+
tensor<fp16, [1, 1500, 512]> transpose_48 = transpose(perm = var_54, x = x_3_cast);
|
30 |
+
tensor<fp16, [1, 1500, 512]> var_57_cast = add(x = transpose_48, y = positional_embedding_to_fp16);
|
31 |
+
tensor<int32, []> var_70 = const()[name = tensor<string, []>("op_70"), val = tensor<int32, []>(-1)];
|
32 |
+
tensor<int32, [1]> var_87_axes_0 = const()[name = tensor<string, []>("op_87_axes_0"), val = tensor<int32, [1]>([-1])];
|
33 |
+
tensor<fp16, [512]> blocks_0_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_0_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3357056)))];
|
34 |
+
tensor<fp16, [512]> blocks_0_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_0_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3358144)))];
|
35 |
+
tensor<fp16, []> var_76_to_fp16 = const()[name = tensor<string, []>("op_76_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
36 |
+
tensor<fp16, [1, 1500, 512]> var_87_cast = layer_norm(axes = var_87_axes_0, beta = blocks_0_attn_ln_bias_to_fp16, epsilon = var_76_to_fp16, gamma = blocks_0_attn_ln_weight_to_fp16, x = var_57_cast);
|
37 |
+
tensor<fp16, [512, 512]> var_98_to_fp16 = const()[name = tensor<string, []>("op_98_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3359232)))];
|
38 |
+
tensor<fp16, [512]> var_99_to_fp16 = const()[name = tensor<string, []>("op_99_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3883584)))];
|
39 |
+
tensor<fp16, [1, 1500, 512]> q_1_cast = linear(bias = var_99_to_fp16, weight = var_98_to_fp16, x = var_87_cast);
|
40 |
+
tensor<fp16, [512, 512]> var_102_to_fp16 = const()[name = tensor<string, []>("op_102_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3884672)))];
|
41 |
+
tensor<fp16, [512]> k_1_bias_0_to_fp16 = const()[name = tensor<string, []>("k_1_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4409024)))];
|
42 |
+
tensor<fp16, [1, 1500, 512]> k_1_cast = linear(bias = k_1_bias_0_to_fp16, weight = var_102_to_fp16, x = var_87_cast);
|
43 |
+
tensor<fp16, [512, 512]> var_106_to_fp16 = const()[name = tensor<string, []>("op_106_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4410112)))];
|
44 |
+
tensor<fp16, [512]> var_107_to_fp16 = const()[name = tensor<string, []>("op_107_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4934464)))];
|
45 |
+
tensor<fp16, [1, 1500, 512]> v_1_cast = linear(bias = var_107_to_fp16, weight = var_106_to_fp16, x = var_87_cast);
|
46 |
+
tensor<int32, [4]> var_115 = const()[name = tensor<string, []>("op_115"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
47 |
+
tensor<fp16, [1, 1500, 8, 64]> var_116_cast = reshape(shape = var_115, x = q_1_cast);
|
48 |
+
tensor<fp16, [1, 1, 1, 1]> const_42_to_fp16 = const()[name = tensor<string, []>("const_42_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
49 |
+
tensor<fp16, [1, 1500, 8, 64]> q_3_cast = mul(x = var_116_cast, y = const_42_to_fp16);
|
50 |
+
tensor<int32, [4]> var_122 = const()[name = tensor<string, []>("op_122"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
51 |
+
tensor<fp16, [1, 1500, 8, 64]> var_123_cast = reshape(shape = var_122, x = k_1_cast);
|
52 |
+
tensor<fp16, [1, 1, 1, 1]> const_43_to_fp16 = const()[name = tensor<string, []>("const_43_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
53 |
+
tensor<fp16, [1, 1500, 8, 64]> k_3_cast = mul(x = var_123_cast, y = const_43_to_fp16);
|
54 |
+
tensor<int32, [4]> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
55 |
+
tensor<fp16, [1, 1500, 8, 64]> var_130_cast = reshape(shape = var_129, x = v_1_cast);
|
56 |
+
tensor<int32, [4]> var_131 = const()[name = tensor<string, []>("op_131"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
57 |
+
tensor<bool, []> qk_1_transpose_x_0 = const()[name = tensor<string, []>("qk_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
58 |
+
tensor<bool, []> qk_1_transpose_y_0 = const()[name = tensor<string, []>("qk_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
59 |
+
tensor<int32, [4]> transpose_12_perm_0 = const()[name = tensor<string, []>("transpose_12_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
60 |
+
tensor<int32, [4]> transpose_13_perm_0 = const()[name = tensor<string, []>("transpose_13_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
61 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_45 = transpose(perm = transpose_13_perm_0, x = k_3_cast);
|
62 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_46 = transpose(perm = transpose_12_perm_0, x = q_3_cast);
|
63 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_1_cast = matmul(transpose_x = qk_1_transpose_x_0, transpose_y = qk_1_transpose_y_0, x = transpose_46, y = transpose_45);
|
64 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_135_cast = softmax(axis = var_70, x = qk_1_cast);
|
65 |
+
tensor<bool, []> var_137_transpose_x_0 = const()[name = tensor<string, []>("op_137_transpose_x_0"), val = tensor<bool, []>(false)];
|
66 |
+
tensor<bool, []> var_137_transpose_y_0 = const()[name = tensor<string, []>("op_137_transpose_y_0"), val = tensor<bool, []>(false)];
|
67 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_47 = transpose(perm = var_131, x = var_130_cast);
|
68 |
+
tensor<fp16, [1, 8, 1500, 64]> var_137_cast = matmul(transpose_x = var_137_transpose_x_0, transpose_y = var_137_transpose_y_0, x = var_135_cast, y = transpose_47);
|
69 |
+
tensor<int32, [4]> var_138 = const()[name = tensor<string, []>("op_138"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
70 |
+
tensor<int32, [3]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<int32, [3]>([1, 1500, 512])];
|
71 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_44 = transpose(perm = var_138, x = var_137_cast);
|
72 |
+
tensor<fp16, [1, 1500, 512]> x_11_cast = reshape(shape = concat_0, x = transpose_44);
|
73 |
+
tensor<fp16, [512, 512]> var_143_to_fp16 = const()[name = tensor<string, []>("op_143_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4935552)))];
|
74 |
+
tensor<fp16, [512]> var_144_to_fp16 = const()[name = tensor<string, []>("op_144_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5459904)))];
|
75 |
+
tensor<fp16, [1, 1500, 512]> var_145_cast = linear(bias = var_144_to_fp16, weight = var_143_to_fp16, x = x_11_cast);
|
76 |
+
tensor<fp16, [1, 1500, 512]> x_13_cast = add(x = var_57_cast, y = var_145_cast);
|
77 |
+
tensor<int32, [1]> var_151_axes_0 = const()[name = tensor<string, []>("op_151_axes_0"), val = tensor<int32, [1]>([-1])];
|
78 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_0_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5460992)))];
|
79 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_0_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5462080)))];
|
80 |
+
tensor<fp16, [1, 1500, 512]> var_151_cast = layer_norm(axes = var_151_axes_0, beta = blocks_0_mlp_ln_bias_to_fp16, epsilon = var_76_to_fp16, gamma = blocks_0_mlp_ln_weight_to_fp16, x = x_13_cast);
|
81 |
+
tensor<fp16, [2048, 512]> var_160_to_fp16 = const()[name = tensor<string, []>("op_160_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5463168)))];
|
82 |
+
tensor<fp16, [2048]> var_161_to_fp16 = const()[name = tensor<string, []>("op_161_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7560384)))];
|
83 |
+
tensor<fp16, [1, 1500, 2048]> input_9_cast = linear(bias = var_161_to_fp16, weight = var_160_to_fp16, x = var_151_cast);
|
84 |
+
tensor<string, []> x_17_mode_0 = const()[name = tensor<string, []>("x_17_mode_0"), val = tensor<string, []>("EXACT")];
|
85 |
+
tensor<fp16, [1, 1500, 2048]> x_17_cast = gelu(mode = x_17_mode_0, x = input_9_cast);
|
86 |
+
tensor<fp16, [512, 2048]> var_166_to_fp16 = const()[name = tensor<string, []>("op_166_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7564544)))];
|
87 |
+
tensor<fp16, [512]> var_167_to_fp16 = const()[name = tensor<string, []>("op_167_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9661760)))];
|
88 |
+
tensor<fp16, [1, 1500, 512]> var_168_cast = linear(bias = var_167_to_fp16, weight = var_166_to_fp16, x = x_17_cast);
|
89 |
+
tensor<fp16, [1, 1500, 512]> x_19_cast = add(x = x_13_cast, y = var_168_cast);
|
90 |
+
tensor<int32, []> var_177 = const()[name = tensor<string, []>("op_177"), val = tensor<int32, []>(-1)];
|
91 |
+
tensor<int32, [1]> var_194_axes_0 = const()[name = tensor<string, []>("op_194_axes_0"), val = tensor<int32, [1]>([-1])];
|
92 |
+
tensor<fp16, [512]> blocks_1_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_1_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9662848)))];
|
93 |
+
tensor<fp16, [512]> blocks_1_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_1_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9663936)))];
|
94 |
+
tensor<fp16, []> var_183_to_fp16 = const()[name = tensor<string, []>("op_183_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
95 |
+
tensor<fp16, [1, 1500, 512]> var_194_cast = layer_norm(axes = var_194_axes_0, beta = blocks_1_attn_ln_bias_to_fp16, epsilon = var_183_to_fp16, gamma = blocks_1_attn_ln_weight_to_fp16, x = x_19_cast);
|
96 |
+
tensor<fp16, [512, 512]> var_205_to_fp16 = const()[name = tensor<string, []>("op_205_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9665024)))];
|
97 |
+
tensor<fp16, [512]> var_206_to_fp16 = const()[name = tensor<string, []>("op_206_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10189376)))];
|
98 |
+
tensor<fp16, [1, 1500, 512]> q_5_cast = linear(bias = var_206_to_fp16, weight = var_205_to_fp16, x = var_194_cast);
|
99 |
+
tensor<fp16, [512, 512]> var_209_to_fp16 = const()[name = tensor<string, []>("op_209_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10190464)))];
|
100 |
+
tensor<fp16, [512]> k_5_bias_0_to_fp16 = const()[name = tensor<string, []>("k_5_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10714816)))];
|
101 |
+
tensor<fp16, [1, 1500, 512]> k_5_cast = linear(bias = k_5_bias_0_to_fp16, weight = var_209_to_fp16, x = var_194_cast);
|
102 |
+
tensor<fp16, [512, 512]> var_213_to_fp16 = const()[name = tensor<string, []>("op_213_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10715904)))];
|
103 |
+
tensor<fp16, [512]> var_214_to_fp16 = const()[name = tensor<string, []>("op_214_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11240256)))];
|
104 |
+
tensor<fp16, [1, 1500, 512]> v_5_cast = linear(bias = var_214_to_fp16, weight = var_213_to_fp16, x = var_194_cast);
|
105 |
+
tensor<int32, [4]> var_222 = const()[name = tensor<string, []>("op_222"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
106 |
+
tensor<fp16, [1, 1500, 8, 64]> var_223_cast = reshape(shape = var_222, x = q_5_cast);
|
107 |
+
tensor<fp16, [1, 1, 1, 1]> const_44_to_fp16 = const()[name = tensor<string, []>("const_44_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
108 |
+
tensor<fp16, [1, 1500, 8, 64]> q_7_cast = mul(x = var_223_cast, y = const_44_to_fp16);
|
109 |
+
tensor<int32, [4]> var_229 = const()[name = tensor<string, []>("op_229"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
110 |
+
tensor<fp16, [1, 1500, 8, 64]> var_230_cast = reshape(shape = var_229, x = k_5_cast);
|
111 |
+
tensor<fp16, [1, 1, 1, 1]> const_45_to_fp16 = const()[name = tensor<string, []>("const_45_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
112 |
+
tensor<fp16, [1, 1500, 8, 64]> k_7_cast = mul(x = var_230_cast, y = const_45_to_fp16);
|
113 |
+
tensor<int32, [4]> var_236 = const()[name = tensor<string, []>("op_236"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
114 |
+
tensor<fp16, [1, 1500, 8, 64]> var_237_cast = reshape(shape = var_236, x = v_5_cast);
|
115 |
+
tensor<int32, [4]> var_238 = const()[name = tensor<string, []>("op_238"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
116 |
+
tensor<bool, []> qk_3_transpose_x_0 = const()[name = tensor<string, []>("qk_3_transpose_x_0"), val = tensor<bool, []>(false)];
|
117 |
+
tensor<bool, []> qk_3_transpose_y_0 = const()[name = tensor<string, []>("qk_3_transpose_y_0"), val = tensor<bool, []>(false)];
|
118 |
+
tensor<int32, [4]> transpose_14_perm_0 = const()[name = tensor<string, []>("transpose_14_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
119 |
+
tensor<int32, [4]> transpose_15_perm_0 = const()[name = tensor<string, []>("transpose_15_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
120 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_41 = transpose(perm = transpose_15_perm_0, x = k_7_cast);
|
121 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_42 = transpose(perm = transpose_14_perm_0, x = q_7_cast);
|
122 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_3_cast = matmul(transpose_x = qk_3_transpose_x_0, transpose_y = qk_3_transpose_y_0, x = transpose_42, y = transpose_41);
|
123 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_242_cast = softmax(axis = var_177, x = qk_3_cast);
|
124 |
+
tensor<bool, []> var_244_transpose_x_0 = const()[name = tensor<string, []>("op_244_transpose_x_0"), val = tensor<bool, []>(false)];
|
125 |
+
tensor<bool, []> var_244_transpose_y_0 = const()[name = tensor<string, []>("op_244_transpose_y_0"), val = tensor<bool, []>(false)];
|
126 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_43 = transpose(perm = var_238, x = var_237_cast);
|
127 |
+
tensor<fp16, [1, 8, 1500, 64]> var_244_cast = matmul(transpose_x = var_244_transpose_x_0, transpose_y = var_244_transpose_y_0, x = var_242_cast, y = transpose_43);
|
128 |
+
tensor<int32, [4]> var_245 = const()[name = tensor<string, []>("op_245"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
129 |
+
tensor<int32, [3]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<int32, [3]>([1, 1500, 512])];
|
130 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_40 = transpose(perm = var_245, x = var_244_cast);
|
131 |
+
tensor<fp16, [1, 1500, 512]> x_23_cast = reshape(shape = concat_1, x = transpose_40);
|
132 |
+
tensor<fp16, [512, 512]> var_250_to_fp16 = const()[name = tensor<string, []>("op_250_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11241344)))];
|
133 |
+
tensor<fp16, [512]> var_251_to_fp16 = const()[name = tensor<string, []>("op_251_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11765696)))];
|
134 |
+
tensor<fp16, [1, 1500, 512]> var_252_cast = linear(bias = var_251_to_fp16, weight = var_250_to_fp16, x = x_23_cast);
|
135 |
+
tensor<fp16, [1, 1500, 512]> x_25_cast = add(x = x_19_cast, y = var_252_cast);
|
136 |
+
tensor<int32, [1]> var_258_axes_0 = const()[name = tensor<string, []>("op_258_axes_0"), val = tensor<int32, [1]>([-1])];
|
137 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_1_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11766784)))];
|
138 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_1_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11767872)))];
|
139 |
+
tensor<fp16, [1, 1500, 512]> var_258_cast = layer_norm(axes = var_258_axes_0, beta = blocks_1_mlp_ln_bias_to_fp16, epsilon = var_183_to_fp16, gamma = blocks_1_mlp_ln_weight_to_fp16, x = x_25_cast);
|
140 |
+
tensor<fp16, [2048, 512]> var_267_to_fp16 = const()[name = tensor<string, []>("op_267_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11768960)))];
|
141 |
+
tensor<fp16, [2048]> var_268_to_fp16 = const()[name = tensor<string, []>("op_268_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13866176)))];
|
142 |
+
tensor<fp16, [1, 1500, 2048]> input_17_cast = linear(bias = var_268_to_fp16, weight = var_267_to_fp16, x = var_258_cast);
|
143 |
+
tensor<string, []> x_29_mode_0 = const()[name = tensor<string, []>("x_29_mode_0"), val = tensor<string, []>("EXACT")];
|
144 |
+
tensor<fp16, [1, 1500, 2048]> x_29_cast = gelu(mode = x_29_mode_0, x = input_17_cast);
|
145 |
+
tensor<fp16, [512, 2048]> var_273_to_fp16 = const()[name = tensor<string, []>("op_273_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13870336)))];
|
146 |
+
tensor<fp16, [512]> var_274_to_fp16 = const()[name = tensor<string, []>("op_274_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15967552)))];
|
147 |
+
tensor<fp16, [1, 1500, 512]> var_275_cast = linear(bias = var_274_to_fp16, weight = var_273_to_fp16, x = x_29_cast);
|
148 |
+
tensor<fp16, [1, 1500, 512]> x_31_cast = add(x = x_25_cast, y = var_275_cast);
|
149 |
+
tensor<int32, []> var_284 = const()[name = tensor<string, []>("op_284"), val = tensor<int32, []>(-1)];
|
150 |
+
tensor<int32, [1]> var_301_axes_0 = const()[name = tensor<string, []>("op_301_axes_0"), val = tensor<int32, [1]>([-1])];
|
151 |
+
tensor<fp16, [512]> blocks_2_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_2_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15968640)))];
|
152 |
+
tensor<fp16, [512]> blocks_2_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_2_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15969728)))];
|
153 |
+
tensor<fp16, []> var_290_to_fp16 = const()[name = tensor<string, []>("op_290_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
154 |
+
tensor<fp16, [1, 1500, 512]> var_301_cast = layer_norm(axes = var_301_axes_0, beta = blocks_2_attn_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_attn_ln_weight_to_fp16, x = x_31_cast);
|
155 |
+
tensor<fp16, [512, 512]> var_312_to_fp16 = const()[name = tensor<string, []>("op_312_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15970816)))];
|
156 |
+
tensor<fp16, [512]> var_313_to_fp16 = const()[name = tensor<string, []>("op_313_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16495168)))];
|
157 |
+
tensor<fp16, [1, 1500, 512]> q_9_cast = linear(bias = var_313_to_fp16, weight = var_312_to_fp16, x = var_301_cast);
|
158 |
+
tensor<fp16, [512, 512]> var_316_to_fp16 = const()[name = tensor<string, []>("op_316_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16496256)))];
|
159 |
+
tensor<fp16, [512]> k_9_bias_0_to_fp16 = const()[name = tensor<string, []>("k_9_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17020608)))];
|
160 |
+
tensor<fp16, [1, 1500, 512]> k_9_cast = linear(bias = k_9_bias_0_to_fp16, weight = var_316_to_fp16, x = var_301_cast);
|
161 |
+
tensor<fp16, [512, 512]> var_320_to_fp16 = const()[name = tensor<string, []>("op_320_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17021696)))];
|
162 |
+
tensor<fp16, [512]> var_321_to_fp16 = const()[name = tensor<string, []>("op_321_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17546048)))];
|
163 |
+
tensor<fp16, [1, 1500, 512]> v_9_cast = linear(bias = var_321_to_fp16, weight = var_320_to_fp16, x = var_301_cast);
|
164 |
+
tensor<int32, [4]> var_329 = const()[name = tensor<string, []>("op_329"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
165 |
+
tensor<fp16, [1, 1500, 8, 64]> var_330_cast = reshape(shape = var_329, x = q_9_cast);
|
166 |
+
tensor<fp16, [1, 1, 1, 1]> const_46_to_fp16 = const()[name = tensor<string, []>("const_46_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
167 |
+
tensor<fp16, [1, 1500, 8, 64]> q_11_cast = mul(x = var_330_cast, y = const_46_to_fp16);
|
168 |
+
tensor<int32, [4]> var_336 = const()[name = tensor<string, []>("op_336"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
169 |
+
tensor<fp16, [1, 1500, 8, 64]> var_337_cast = reshape(shape = var_336, x = k_9_cast);
|
170 |
+
tensor<fp16, [1, 1, 1, 1]> const_47_to_fp16 = const()[name = tensor<string, []>("const_47_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
171 |
+
tensor<fp16, [1, 1500, 8, 64]> k_11_cast = mul(x = var_337_cast, y = const_47_to_fp16);
|
172 |
+
tensor<int32, [4]> var_343 = const()[name = tensor<string, []>("op_343"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
173 |
+
tensor<fp16, [1, 1500, 8, 64]> var_344_cast = reshape(shape = var_343, x = v_9_cast);
|
174 |
+
tensor<int32, [4]> var_345 = const()[name = tensor<string, []>("op_345"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
175 |
+
tensor<bool, []> qk_5_transpose_x_0 = const()[name = tensor<string, []>("qk_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
176 |
+
tensor<bool, []> qk_5_transpose_y_0 = const()[name = tensor<string, []>("qk_5_transpose_y_0"), val = tensor<bool, []>(false)];
|
177 |
+
tensor<int32, [4]> transpose_16_perm_0 = const()[name = tensor<string, []>("transpose_16_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
178 |
+
tensor<int32, [4]> transpose_17_perm_0 = const()[name = tensor<string, []>("transpose_17_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
179 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_37 = transpose(perm = transpose_17_perm_0, x = k_11_cast);
|
180 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_38 = transpose(perm = transpose_16_perm_0, x = q_11_cast);
|
181 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_5_cast = matmul(transpose_x = qk_5_transpose_x_0, transpose_y = qk_5_transpose_y_0, x = transpose_38, y = transpose_37);
|
182 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_349_cast = softmax(axis = var_284, x = qk_5_cast);
|
183 |
+
tensor<bool, []> var_351_transpose_x_0 = const()[name = tensor<string, []>("op_351_transpose_x_0"), val = tensor<bool, []>(false)];
|
184 |
+
tensor<bool, []> var_351_transpose_y_0 = const()[name = tensor<string, []>("op_351_transpose_y_0"), val = tensor<bool, []>(false)];
|
185 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_39 = transpose(perm = var_345, x = var_344_cast);
|
186 |
+
tensor<fp16, [1, 8, 1500, 64]> var_351_cast = matmul(transpose_x = var_351_transpose_x_0, transpose_y = var_351_transpose_y_0, x = var_349_cast, y = transpose_39);
|
187 |
+
tensor<int32, [4]> var_352 = const()[name = tensor<string, []>("op_352"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
188 |
+
tensor<int32, [3]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<int32, [3]>([1, 1500, 512])];
|
189 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_36 = transpose(perm = var_352, x = var_351_cast);
|
190 |
+
tensor<fp16, [1, 1500, 512]> x_35_cast = reshape(shape = concat_2, x = transpose_36);
|
191 |
+
tensor<fp16, [512, 512]> var_357_to_fp16 = const()[name = tensor<string, []>("op_357_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17547136)))];
|
192 |
+
tensor<fp16, [512]> var_358_to_fp16 = const()[name = tensor<string, []>("op_358_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18071488)))];
|
193 |
+
tensor<fp16, [1, 1500, 512]> var_359_cast = linear(bias = var_358_to_fp16, weight = var_357_to_fp16, x = x_35_cast);
|
194 |
+
tensor<fp16, [1, 1500, 512]> x_37_cast = add(x = x_31_cast, y = var_359_cast);
|
195 |
+
tensor<int32, [1]> var_365_axes_0 = const()[name = tensor<string, []>("op_365_axes_0"), val = tensor<int32, [1]>([-1])];
|
196 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_2_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18072576)))];
|
197 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_2_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18073664)))];
|
198 |
+
tensor<fp16, [1, 1500, 512]> var_365_cast = layer_norm(axes = var_365_axes_0, beta = blocks_2_mlp_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_mlp_ln_weight_to_fp16, x = x_37_cast);
|
199 |
+
tensor<fp16, [2048, 512]> var_374_to_fp16 = const()[name = tensor<string, []>("op_374_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18074752)))];
|
200 |
+
tensor<fp16, [2048]> var_375_to_fp16 = const()[name = tensor<string, []>("op_375_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20171968)))];
|
201 |
+
tensor<fp16, [1, 1500, 2048]> input_25_cast = linear(bias = var_375_to_fp16, weight = var_374_to_fp16, x = var_365_cast);
|
202 |
+
tensor<string, []> x_41_mode_0 = const()[name = tensor<string, []>("x_41_mode_0"), val = tensor<string, []>("EXACT")];
|
203 |
+
tensor<fp16, [1, 1500, 2048]> x_41_cast = gelu(mode = x_41_mode_0, x = input_25_cast);
|
204 |
+
tensor<fp16, [512, 2048]> var_380_to_fp16 = const()[name = tensor<string, []>("op_380_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20176128)))];
|
205 |
+
tensor<fp16, [512]> var_381_to_fp16 = const()[name = tensor<string, []>("op_381_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22273344)))];
|
206 |
+
tensor<fp16, [1, 1500, 512]> var_382_cast = linear(bias = var_381_to_fp16, weight = var_380_to_fp16, x = x_41_cast);
|
207 |
+
tensor<fp16, [1, 1500, 512]> x_43_cast = add(x = x_37_cast, y = var_382_cast);
|
208 |
+
tensor<int32, []> var_391 = const()[name = tensor<string, []>("op_391"), val = tensor<int32, []>(-1)];
|
209 |
+
tensor<int32, [1]> var_408_axes_0 = const()[name = tensor<string, []>("op_408_axes_0"), val = tensor<int32, [1]>([-1])];
|
210 |
+
tensor<fp16, [512]> blocks_3_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_3_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22274432)))];
|
211 |
+
tensor<fp16, [512]> blocks_3_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_3_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22275520)))];
|
212 |
+
tensor<fp16, []> var_397_to_fp16 = const()[name = tensor<string, []>("op_397_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
213 |
+
tensor<fp16, [1, 1500, 512]> var_408_cast = layer_norm(axes = var_408_axes_0, beta = blocks_3_attn_ln_bias_to_fp16, epsilon = var_397_to_fp16, gamma = blocks_3_attn_ln_weight_to_fp16, x = x_43_cast);
|
214 |
+
tensor<fp16, [512, 512]> var_419_to_fp16 = const()[name = tensor<string, []>("op_419_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22276608)))];
|
215 |
+
tensor<fp16, [512]> var_420_to_fp16 = const()[name = tensor<string, []>("op_420_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22800960)))];
|
216 |
+
tensor<fp16, [1, 1500, 512]> q_13_cast = linear(bias = var_420_to_fp16, weight = var_419_to_fp16, x = var_408_cast);
|
217 |
+
tensor<fp16, [512, 512]> var_423_to_fp16 = const()[name = tensor<string, []>("op_423_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22802048)))];
|
218 |
+
tensor<fp16, [512]> k_13_bias_0_to_fp16 = const()[name = tensor<string, []>("k_13_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23326400)))];
|
219 |
+
tensor<fp16, [1, 1500, 512]> k_13_cast = linear(bias = k_13_bias_0_to_fp16, weight = var_423_to_fp16, x = var_408_cast);
|
220 |
+
tensor<fp16, [512, 512]> var_427_to_fp16 = const()[name = tensor<string, []>("op_427_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23327488)))];
|
221 |
+
tensor<fp16, [512]> var_428_to_fp16 = const()[name = tensor<string, []>("op_428_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23851840)))];
|
222 |
+
tensor<fp16, [1, 1500, 512]> v_13_cast = linear(bias = var_428_to_fp16, weight = var_427_to_fp16, x = var_408_cast);
|
223 |
+
tensor<int32, [4]> var_436 = const()[name = tensor<string, []>("op_436"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
224 |
+
tensor<fp16, [1, 1500, 8, 64]> var_437_cast = reshape(shape = var_436, x = q_13_cast);
|
225 |
+
tensor<fp16, [1, 1, 1, 1]> const_48_to_fp16 = const()[name = tensor<string, []>("const_48_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
226 |
+
tensor<fp16, [1, 1500, 8, 64]> q_15_cast = mul(x = var_437_cast, y = const_48_to_fp16);
|
227 |
+
tensor<int32, [4]> var_443 = const()[name = tensor<string, []>("op_443"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
228 |
+
tensor<fp16, [1, 1500, 8, 64]> var_444_cast = reshape(shape = var_443, x = k_13_cast);
|
229 |
+
tensor<fp16, [1, 1, 1, 1]> const_49_to_fp16 = const()[name = tensor<string, []>("const_49_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
230 |
+
tensor<fp16, [1, 1500, 8, 64]> k_15_cast = mul(x = var_444_cast, y = const_49_to_fp16);
|
231 |
+
tensor<int32, [4]> var_450 = const()[name = tensor<string, []>("op_450"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
232 |
+
tensor<fp16, [1, 1500, 8, 64]> var_451_cast = reshape(shape = var_450, x = v_13_cast);
|
233 |
+
tensor<int32, [4]> var_452 = const()[name = tensor<string, []>("op_452"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
234 |
+
tensor<bool, []> qk_7_transpose_x_0 = const()[name = tensor<string, []>("qk_7_transpose_x_0"), val = tensor<bool, []>(false)];
|
235 |
+
tensor<bool, []> qk_7_transpose_y_0 = const()[name = tensor<string, []>("qk_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
236 |
+
tensor<int32, [4]> transpose_18_perm_0 = const()[name = tensor<string, []>("transpose_18_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
237 |
+
tensor<int32, [4]> transpose_19_perm_0 = const()[name = tensor<string, []>("transpose_19_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
238 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_33 = transpose(perm = transpose_19_perm_0, x = k_15_cast);
|
239 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_34 = transpose(perm = transpose_18_perm_0, x = q_15_cast);
|
240 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_7_cast = matmul(transpose_x = qk_7_transpose_x_0, transpose_y = qk_7_transpose_y_0, x = transpose_34, y = transpose_33);
|
241 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_456_cast = softmax(axis = var_391, x = qk_7_cast);
|
242 |
+
tensor<bool, []> var_458_transpose_x_0 = const()[name = tensor<string, []>("op_458_transpose_x_0"), val = tensor<bool, []>(false)];
|
243 |
+
tensor<bool, []> var_458_transpose_y_0 = const()[name = tensor<string, []>("op_458_transpose_y_0"), val = tensor<bool, []>(false)];
|
244 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_35 = transpose(perm = var_452, x = var_451_cast);
|
245 |
+
tensor<fp16, [1, 8, 1500, 64]> var_458_cast = matmul(transpose_x = var_458_transpose_x_0, transpose_y = var_458_transpose_y_0, x = var_456_cast, y = transpose_35);
|
246 |
+
tensor<int32, [4]> var_459 = const()[name = tensor<string, []>("op_459"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
247 |
+
tensor<int32, [3]> concat_3 = const()[name = tensor<string, []>("concat_3"), val = tensor<int32, [3]>([1, 1500, 512])];
|
248 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_32 = transpose(perm = var_459, x = var_458_cast);
|
249 |
+
tensor<fp16, [1, 1500, 512]> x_47_cast = reshape(shape = concat_3, x = transpose_32);
|
250 |
+
tensor<fp16, [512, 512]> var_464_to_fp16 = const()[name = tensor<string, []>("op_464_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23852928)))];
|
251 |
+
tensor<fp16, [512]> var_465_to_fp16 = const()[name = tensor<string, []>("op_465_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24377280)))];
|
252 |
+
tensor<fp16, [1, 1500, 512]> var_466_cast = linear(bias = var_465_to_fp16, weight = var_464_to_fp16, x = x_47_cast);
|
253 |
+
tensor<fp16, [1, 1500, 512]> x_49_cast = add(x = x_43_cast, y = var_466_cast);
|
254 |
+
tensor<int32, [1]> var_472_axes_0 = const()[name = tensor<string, []>("op_472_axes_0"), val = tensor<int32, [1]>([-1])];
|
255 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_3_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24378368)))];
|
256 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_3_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24379456)))];
|
257 |
+
tensor<fp16, [1, 1500, 512]> var_472_cast = layer_norm(axes = var_472_axes_0, beta = blocks_3_mlp_ln_bias_to_fp16, epsilon = var_397_to_fp16, gamma = blocks_3_mlp_ln_weight_to_fp16, x = x_49_cast);
|
258 |
+
tensor<fp16, [2048, 512]> var_481_to_fp16 = const()[name = tensor<string, []>("op_481_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24380544)))];
|
259 |
+
tensor<fp16, [2048]> var_482_to_fp16 = const()[name = tensor<string, []>("op_482_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(26477760)))];
|
260 |
+
tensor<fp16, [1, 1500, 2048]> input_33_cast = linear(bias = var_482_to_fp16, weight = var_481_to_fp16, x = var_472_cast);
|
261 |
+
tensor<string, []> x_53_mode_0 = const()[name = tensor<string, []>("x_53_mode_0"), val = tensor<string, []>("EXACT")];
|
262 |
+
tensor<fp16, [1, 1500, 2048]> x_53_cast = gelu(mode = x_53_mode_0, x = input_33_cast);
|
263 |
+
tensor<fp16, [512, 2048]> var_487_to_fp16 = const()[name = tensor<string, []>("op_487_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(26481920)))];
|
264 |
+
tensor<fp16, [512]> var_488_to_fp16 = const()[name = tensor<string, []>("op_488_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28579136)))];
|
265 |
+
tensor<fp16, [1, 1500, 512]> var_489_cast = linear(bias = var_488_to_fp16, weight = var_487_to_fp16, x = x_53_cast);
|
266 |
+
tensor<fp16, [1, 1500, 512]> x_55_cast = add(x = x_49_cast, y = var_489_cast);
|
267 |
+
tensor<int32, []> var_498 = const()[name = tensor<string, []>("op_498"), val = tensor<int32, []>(-1)];
|
268 |
+
tensor<int32, [1]> var_515_axes_0 = const()[name = tensor<string, []>("op_515_axes_0"), val = tensor<int32, [1]>([-1])];
|
269 |
+
tensor<fp16, [512]> blocks_4_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_4_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28580224)))];
|
270 |
+
tensor<fp16, [512]> blocks_4_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_4_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28581312)))];
|
271 |
+
tensor<fp16, []> var_504_to_fp16 = const()[name = tensor<string, []>("op_504_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
272 |
+
tensor<fp16, [1, 1500, 512]> var_515_cast = layer_norm(axes = var_515_axes_0, beta = blocks_4_attn_ln_bias_to_fp16, epsilon = var_504_to_fp16, gamma = blocks_4_attn_ln_weight_to_fp16, x = x_55_cast);
|
273 |
+
tensor<fp16, [512, 512]> var_526_to_fp16 = const()[name = tensor<string, []>("op_526_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28582400)))];
|
274 |
+
tensor<fp16, [512]> var_527_to_fp16 = const()[name = tensor<string, []>("op_527_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29106752)))];
|
275 |
+
tensor<fp16, [1, 1500, 512]> q_17_cast = linear(bias = var_527_to_fp16, weight = var_526_to_fp16, x = var_515_cast);
|
276 |
+
tensor<fp16, [512, 512]> var_530_to_fp16 = const()[name = tensor<string, []>("op_530_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29107840)))];
|
277 |
+
tensor<fp16, [512]> k_17_bias_0_to_fp16 = const()[name = tensor<string, []>("k_17_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29632192)))];
|
278 |
+
tensor<fp16, [1, 1500, 512]> k_17_cast = linear(bias = k_17_bias_0_to_fp16, weight = var_530_to_fp16, x = var_515_cast);
|
279 |
+
tensor<fp16, [512, 512]> var_534_to_fp16 = const()[name = tensor<string, []>("op_534_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29633280)))];
|
280 |
+
tensor<fp16, [512]> var_535_to_fp16 = const()[name = tensor<string, []>("op_535_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30157632)))];
|
281 |
+
tensor<fp16, [1, 1500, 512]> v_17_cast = linear(bias = var_535_to_fp16, weight = var_534_to_fp16, x = var_515_cast);
|
282 |
+
tensor<int32, [4]> var_543 = const()[name = tensor<string, []>("op_543"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
283 |
+
tensor<fp16, [1, 1500, 8, 64]> var_544_cast = reshape(shape = var_543, x = q_17_cast);
|
284 |
+
tensor<fp16, [1, 1, 1, 1]> const_50_to_fp16 = const()[name = tensor<string, []>("const_50_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
285 |
+
tensor<fp16, [1, 1500, 8, 64]> q_19_cast = mul(x = var_544_cast, y = const_50_to_fp16);
|
286 |
+
tensor<int32, [4]> var_550 = const()[name = tensor<string, []>("op_550"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
287 |
+
tensor<fp16, [1, 1500, 8, 64]> var_551_cast = reshape(shape = var_550, x = k_17_cast);
|
288 |
+
tensor<fp16, [1, 1, 1, 1]> const_51_to_fp16 = const()[name = tensor<string, []>("const_51_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
289 |
+
tensor<fp16, [1, 1500, 8, 64]> k_19_cast = mul(x = var_551_cast, y = const_51_to_fp16);
|
290 |
+
tensor<int32, [4]> var_557 = const()[name = tensor<string, []>("op_557"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
291 |
+
tensor<fp16, [1, 1500, 8, 64]> var_558_cast = reshape(shape = var_557, x = v_17_cast);
|
292 |
+
tensor<int32, [4]> var_559 = const()[name = tensor<string, []>("op_559"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
293 |
+
tensor<bool, []> qk_9_transpose_x_0 = const()[name = tensor<string, []>("qk_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
294 |
+
tensor<bool, []> qk_9_transpose_y_0 = const()[name = tensor<string, []>("qk_9_transpose_y_0"), val = tensor<bool, []>(false)];
|
295 |
+
tensor<int32, [4]> transpose_20_perm_0 = const()[name = tensor<string, []>("transpose_20_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
296 |
+
tensor<int32, [4]> transpose_21_perm_0 = const()[name = tensor<string, []>("transpose_21_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
297 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_29 = transpose(perm = transpose_21_perm_0, x = k_19_cast);
|
298 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_30 = transpose(perm = transpose_20_perm_0, x = q_19_cast);
|
299 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_9_cast = matmul(transpose_x = qk_9_transpose_x_0, transpose_y = qk_9_transpose_y_0, x = transpose_30, y = transpose_29);
|
300 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_563_cast = softmax(axis = var_498, x = qk_9_cast);
|
301 |
+
tensor<bool, []> var_565_transpose_x_0 = const()[name = tensor<string, []>("op_565_transpose_x_0"), val = tensor<bool, []>(false)];
|
302 |
+
tensor<bool, []> var_565_transpose_y_0 = const()[name = tensor<string, []>("op_565_transpose_y_0"), val = tensor<bool, []>(false)];
|
303 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_31 = transpose(perm = var_559, x = var_558_cast);
|
304 |
+
tensor<fp16, [1, 8, 1500, 64]> var_565_cast = matmul(transpose_x = var_565_transpose_x_0, transpose_y = var_565_transpose_y_0, x = var_563_cast, y = transpose_31);
|
305 |
+
tensor<int32, [4]> var_566 = const()[name = tensor<string, []>("op_566"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
306 |
+
tensor<int32, [3]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<int32, [3]>([1, 1500, 512])];
|
307 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_28 = transpose(perm = var_566, x = var_565_cast);
|
308 |
+
tensor<fp16, [1, 1500, 512]> x_59_cast = reshape(shape = concat_4, x = transpose_28);
|
309 |
+
tensor<fp16, [512, 512]> var_571_to_fp16 = const()[name = tensor<string, []>("op_571_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30158720)))];
|
310 |
+
tensor<fp16, [512]> var_572_to_fp16 = const()[name = tensor<string, []>("op_572_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30683072)))];
|
311 |
+
tensor<fp16, [1, 1500, 512]> var_573_cast = linear(bias = var_572_to_fp16, weight = var_571_to_fp16, x = x_59_cast);
|
312 |
+
tensor<fp16, [1, 1500, 512]> x_61_cast = add(x = x_55_cast, y = var_573_cast);
|
313 |
+
tensor<int32, [1]> var_579_axes_0 = const()[name = tensor<string, []>("op_579_axes_0"), val = tensor<int32, [1]>([-1])];
|
314 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_4_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30684160)))];
|
315 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_4_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30685248)))];
|
316 |
+
tensor<fp16, [1, 1500, 512]> var_579_cast = layer_norm(axes = var_579_axes_0, beta = blocks_4_mlp_ln_bias_to_fp16, epsilon = var_504_to_fp16, gamma = blocks_4_mlp_ln_weight_to_fp16, x = x_61_cast);
|
317 |
+
tensor<fp16, [2048, 512]> var_588_to_fp16 = const()[name = tensor<string, []>("op_588_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30686336)))];
|
318 |
+
tensor<fp16, [2048]> var_589_to_fp16 = const()[name = tensor<string, []>("op_589_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(32783552)))];
|
319 |
+
tensor<fp16, [1, 1500, 2048]> input_41_cast = linear(bias = var_589_to_fp16, weight = var_588_to_fp16, x = var_579_cast);
|
320 |
+
tensor<string, []> x_65_mode_0 = const()[name = tensor<string, []>("x_65_mode_0"), val = tensor<string, []>("EXACT")];
|
321 |
+
tensor<fp16, [1, 1500, 2048]> x_65_cast = gelu(mode = x_65_mode_0, x = input_41_cast);
|
322 |
+
tensor<fp16, [512, 2048]> var_594_to_fp16 = const()[name = tensor<string, []>("op_594_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(32787712)))];
|
323 |
+
tensor<fp16, [512]> var_595_to_fp16 = const()[name = tensor<string, []>("op_595_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34884928)))];
|
324 |
+
tensor<fp16, [1, 1500, 512]> var_596_cast = linear(bias = var_595_to_fp16, weight = var_594_to_fp16, x = x_65_cast);
|
325 |
+
tensor<fp16, [1, 1500, 512]> x_67_cast = add(x = x_61_cast, y = var_596_cast);
|
326 |
+
tensor<int32, []> var_605 = const()[name = tensor<string, []>("op_605"), val = tensor<int32, []>(-1)];
|
327 |
+
tensor<int32, [1]> var_622_axes_0 = const()[name = tensor<string, []>("op_622_axes_0"), val = tensor<int32, [1]>([-1])];
|
328 |
+
tensor<fp16, [512]> blocks_5_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_5_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34886016)))];
|
329 |
+
tensor<fp16, [512]> blocks_5_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_5_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34887104)))];
|
330 |
+
tensor<fp16, []> var_611_to_fp16 = const()[name = tensor<string, []>("op_611_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
331 |
+
tensor<fp16, [1, 1500, 512]> var_622_cast = layer_norm(axes = var_622_axes_0, beta = blocks_5_attn_ln_bias_to_fp16, epsilon = var_611_to_fp16, gamma = blocks_5_attn_ln_weight_to_fp16, x = x_67_cast);
|
332 |
+
tensor<fp16, [512, 512]> var_633_to_fp16 = const()[name = tensor<string, []>("op_633_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34888192)))];
|
333 |
+
tensor<fp16, [512]> var_634_to_fp16 = const()[name = tensor<string, []>("op_634_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35412544)))];
|
334 |
+
tensor<fp16, [1, 1500, 512]> q_21_cast = linear(bias = var_634_to_fp16, weight = var_633_to_fp16, x = var_622_cast);
|
335 |
+
tensor<fp16, [512, 512]> var_637_to_fp16 = const()[name = tensor<string, []>("op_637_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35413632)))];
|
336 |
+
tensor<fp16, [512]> k_21_bias_0_to_fp16 = const()[name = tensor<string, []>("k_21_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35937984)))];
|
337 |
+
tensor<fp16, [1, 1500, 512]> k_21_cast = linear(bias = k_21_bias_0_to_fp16, weight = var_637_to_fp16, x = var_622_cast);
|
338 |
+
tensor<fp16, [512, 512]> var_641_to_fp16 = const()[name = tensor<string, []>("op_641_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35939072)))];
|
339 |
+
tensor<fp16, [512]> var_642_to_fp16 = const()[name = tensor<string, []>("op_642_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36463424)))];
|
340 |
+
tensor<fp16, [1, 1500, 512]> v_21_cast = linear(bias = var_642_to_fp16, weight = var_641_to_fp16, x = var_622_cast);
|
341 |
+
tensor<int32, [4]> var_650 = const()[name = tensor<string, []>("op_650"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
342 |
+
tensor<fp16, [1, 1500, 8, 64]> var_651_cast = reshape(shape = var_650, x = q_21_cast);
|
343 |
+
tensor<fp16, [1, 1, 1, 1]> const_52_to_fp16 = const()[name = tensor<string, []>("const_52_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
344 |
+
tensor<fp16, [1, 1500, 8, 64]> q_cast = mul(x = var_651_cast, y = const_52_to_fp16);
|
345 |
+
tensor<int32, [4]> var_657 = const()[name = tensor<string, []>("op_657"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
346 |
+
tensor<fp16, [1, 1500, 8, 64]> var_658_cast = reshape(shape = var_657, x = k_21_cast);
|
347 |
+
tensor<fp16, [1, 1, 1, 1]> const_53_to_fp16 = const()[name = tensor<string, []>("const_53_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
348 |
+
tensor<fp16, [1, 1500, 8, 64]> k_cast = mul(x = var_658_cast, y = const_53_to_fp16);
|
349 |
+
tensor<int32, [4]> var_664 = const()[name = tensor<string, []>("op_664"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
350 |
+
tensor<fp16, [1, 1500, 8, 64]> var_665_cast = reshape(shape = var_664, x = v_21_cast);
|
351 |
+
tensor<int32, [4]> var_666 = const()[name = tensor<string, []>("op_666"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
352 |
+
tensor<bool, []> qk_transpose_x_0 = const()[name = tensor<string, []>("qk_transpose_x_0"), val = tensor<bool, []>(false)];
|
353 |
+
tensor<bool, []> qk_transpose_y_0 = const()[name = tensor<string, []>("qk_transpose_y_0"), val = tensor<bool, []>(false)];
|
354 |
+
tensor<int32, [4]> transpose_22_perm_0 = const()[name = tensor<string, []>("transpose_22_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
355 |
+
tensor<int32, [4]> transpose_23_perm_0 = const()[name = tensor<string, []>("transpose_23_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
356 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_25 = transpose(perm = transpose_23_perm_0, x = k_cast);
|
357 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_26 = transpose(perm = transpose_22_perm_0, x = q_cast);
|
358 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_cast = matmul(transpose_x = qk_transpose_x_0, transpose_y = qk_transpose_y_0, x = transpose_26, y = transpose_25);
|
359 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_670_cast = softmax(axis = var_605, x = qk_cast);
|
360 |
+
tensor<bool, []> var_672_transpose_x_0 = const()[name = tensor<string, []>("op_672_transpose_x_0"), val = tensor<bool, []>(false)];
|
361 |
+
tensor<bool, []> var_672_transpose_y_0 = const()[name = tensor<string, []>("op_672_transpose_y_0"), val = tensor<bool, []>(false)];
|
362 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_27 = transpose(perm = var_666, x = var_665_cast);
|
363 |
+
tensor<fp16, [1, 8, 1500, 64]> var_672_cast = matmul(transpose_x = var_672_transpose_x_0, transpose_y = var_672_transpose_y_0, x = var_670_cast, y = transpose_27);
|
364 |
+
tensor<int32, [4]> var_673 = const()[name = tensor<string, []>("op_673"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
365 |
+
tensor<int32, [3]> concat_5 = const()[name = tensor<string, []>("concat_5"), val = tensor<int32, [3]>([1, 1500, 512])];
|
366 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_24 = transpose(perm = var_673, x = var_672_cast);
|
367 |
+
tensor<fp16, [1, 1500, 512]> x_71_cast = reshape(shape = concat_5, x = transpose_24);
|
368 |
+
tensor<fp16, [512, 512]> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36464512)))];
|
369 |
+
tensor<fp16, [512]> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36988864)))];
|
370 |
+
tensor<fp16, [1, 1500, 512]> var_680_cast = linear(bias = var_679_to_fp16, weight = var_678_to_fp16, x = x_71_cast);
|
371 |
+
tensor<fp16, [1, 1500, 512]> x_73_cast = add(x = x_67_cast, y = var_680_cast);
|
372 |
+
tensor<int32, [1]> var_686_axes_0 = const()[name = tensor<string, []>("op_686_axes_0"), val = tensor<int32, [1]>([-1])];
|
373 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_5_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36989952)))];
|
374 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_5_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36991040)))];
|
375 |
+
tensor<fp16, [1, 1500, 512]> var_686_cast = layer_norm(axes = var_686_axes_0, beta = blocks_5_mlp_ln_bias_to_fp16, epsilon = var_611_to_fp16, gamma = blocks_5_mlp_ln_weight_to_fp16, x = x_73_cast);
|
376 |
+
tensor<fp16, [2048, 512]> var_695_to_fp16 = const()[name = tensor<string, []>("op_695_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36992128)))];
|
377 |
+
tensor<fp16, [2048]> var_696_to_fp16 = const()[name = tensor<string, []>("op_696_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39089344)))];
|
378 |
+
tensor<fp16, [1, 1500, 2048]> input_49_cast = linear(bias = var_696_to_fp16, weight = var_695_to_fp16, x = var_686_cast);
|
379 |
+
tensor<string, []> x_77_mode_0 = const()[name = tensor<string, []>("x_77_mode_0"), val = tensor<string, []>("EXACT")];
|
380 |
+
tensor<fp16, [1, 1500, 2048]> x_77_cast = gelu(mode = x_77_mode_0, x = input_49_cast);
|
381 |
+
tensor<fp16, [512, 2048]> var_701_to_fp16 = const()[name = tensor<string, []>("op_701_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39093504)))];
|
382 |
+
tensor<fp16, [512]> var_702_to_fp16 = const()[name = tensor<string, []>("op_702_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41190720)))];
|
383 |
+
tensor<fp16, [1, 1500, 512]> var_703_cast = linear(bias = var_702_to_fp16, weight = var_701_to_fp16, x = x_77_cast);
|
384 |
+
tensor<fp16, [1, 1500, 512]> x_cast = add(x = x_73_cast, y = var_703_cast);
|
385 |
+
tensor<int32, [1]> var_716_axes_0 = const()[name = tensor<string, []>("op_716_axes_0"), val = tensor<int32, [1]>([-1])];
|
386 |
+
tensor<fp16, [512]> ln_post_weight_to_fp16 = const()[name = tensor<string, []>("ln_post_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41191808)))];
|
387 |
+
tensor<fp16, [512]> ln_post_bias_to_fp16 = const()[name = tensor<string, []>("ln_post_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41192896)))];
|
388 |
+
tensor<fp16, []> var_707_to_fp16 = const()[name = tensor<string, []>("op_707_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
389 |
+
tensor<fp16, [1, 1500, 512]> var_716_cast = layer_norm(axes = var_716_axes_0, beta = ln_post_bias_to_fp16, epsilon = var_707_to_fp16, gamma = ln_post_weight_to_fp16, x = x_cast);
|
390 |
+
tensor<string, []> var_716_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_716_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
391 |
+
tensor<fp32, [1, 1500, 512]> output = cast(dtype = var_716_cast_to_fp32_dtype_0, x = var_716_cast);
|
392 |
+
} -> (output);
|
393 |
+
}
|
ggml-base-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa38c9d90f01effad1990d1f17e67cd8382c6486b8e5a4dbacf44439cd838a38
|
3 |
+
size 41193984
|
ggml-base.en-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 37950917
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0634e109c4ec900dc6ffc3305ac8367822ade13fcc10425ec0db0dbfcebb12aa
|
3 |
size 37950917
|
ggml-base.en-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2441ae34fc7d12946dba7b63379063e856ffc7c3e11ba5f7533efb1450562ca6
|
3 |
+
size 207
|
ggml-base.en-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-base.en-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 36,
|
23 |
+
"Matmul" : 12,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 6,
|
27 |
+
"Add" : 13,
|
28 |
+
"LayerNorm" : 13,
|
29 |
+
"Mul" : 12,
|
30 |
+
"Transpose" : 25,
|
31 |
+
"Gelu" : 8,
|
32 |
+
"Reshape" : 24
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"watchOS" : "8.0",
|
40 |
+
"iOS" : "15.0",
|
41 |
+
"macCatalyst" : "15.0"
|
42 |
+
},
|
43 |
+
"modelType" : {
|
44 |
+
"name" : "MLModelType_mlProgram"
|
45 |
+
},
|
46 |
+
"userDefinedMetadata" : {
|
47 |
+
|
48 |
+
},
|
49 |
+
"inputSchema" : [
|
50 |
+
{
|
51 |
+
"hasShapeFlexibility" : "0",
|
52 |
+
"isOptional" : "0",
|
53 |
+
"dataType" : "Float32",
|
54 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
55 |
+
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 80, 3000]",
|
57 |
+
"name" : "logmel_data",
|
58 |
+
"type" : "MultiArray"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"generatedClassName" : "coreml_encoder_base_en",
|
62 |
+
"method" : "predict"
|
63 |
+
}
|
64 |
+
]
|
ggml-base.en-encoder.mlmodelc/model.mil
ADDED
@@ -0,0 +1,393 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
program(1.0)
|
2 |
+
[buildInfo = dict<tensor<string, []>, tensor<string, []>>({{"coremlc-component-MIL", "4.28.4"}, {"coremlc-version", "1436.100.10"}})]
|
3 |
+
{
|
4 |
+
func main<ios15>(tensor<fp32, [1, 80, 3000]> logmel_data) {
|
5 |
+
tensor<int32, []> var_20 = const()[name = tensor<string, []>("op_20"), val = tensor<int32, []>(1)];
|
6 |
+
tensor<int32, [1]> var_28 = const()[name = tensor<string, []>("op_28"), val = tensor<int32, [1]>([1])];
|
7 |
+
tensor<int32, [1]> var_30 = const()[name = tensor<string, []>("op_30"), val = tensor<int32, [1]>([1])];
|
8 |
+
tensor<string, []> var_32_pad_type_0 = const()[name = tensor<string, []>("op_32_pad_type_0"), val = tensor<string, []>("custom")];
|
9 |
+
tensor<int32, [2]> var_32_pad_0 = const()[name = tensor<string, []>("op_32_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
10 |
+
tensor<string, []> logmel_data_to_fp16_dtype_0 = const()[name = tensor<string, []>("logmel_data_to_fp16_dtype_0"), val = tensor<string, []>("fp16")];
|
11 |
+
tensor<fp16, [512, 80, 3]> weight_3_to_fp16 = const()[name = tensor<string, []>("weight_3_to_fp16"), val = tensor<fp16, [512, 80, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(64)))];
|
12 |
+
tensor<fp16, [512]> bias_3_to_fp16 = const()[name = tensor<string, []>("bias_3_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(245888)))];
|
13 |
+
tensor<fp16, [1, 80, 3000]> cast_187 = cast(dtype = logmel_data_to_fp16_dtype_0, x = logmel_data);
|
14 |
+
tensor<fp16, [1, 512, 3000]> var_32_cast = conv(bias = bias_3_to_fp16, dilations = var_30, groups = var_20, pad = var_32_pad_0, pad_type = var_32_pad_type_0, strides = var_28, weight = weight_3_to_fp16, x = cast_187);
|
15 |
+
tensor<string, []> input_1_mode_0 = const()[name = tensor<string, []>("input_1_mode_0"), val = tensor<string, []>("EXACT")];
|
16 |
+
tensor<fp16, [1, 512, 3000]> input_1_cast = gelu(mode = input_1_mode_0, x = var_32_cast);
|
17 |
+
tensor<int32, []> var_36 = const()[name = tensor<string, []>("op_36"), val = tensor<int32, []>(1)];
|
18 |
+
tensor<int32, [1]> var_45 = const()[name = tensor<string, []>("op_45"), val = tensor<int32, [1]>([2])];
|
19 |
+
tensor<int32, [1]> var_47 = const()[name = tensor<string, []>("op_47"), val = tensor<int32, [1]>([1])];
|
20 |
+
tensor<string, []> var_49_pad_type_0 = const()[name = tensor<string, []>("op_49_pad_type_0"), val = tensor<string, []>("custom")];
|
21 |
+
tensor<int32, [2]> var_49_pad_0 = const()[name = tensor<string, []>("op_49_pad_0"), val = tensor<int32, [2]>([1, 1])];
|
22 |
+
tensor<fp16, [512, 512, 3]> weight_7_to_fp16 = const()[name = tensor<string, []>("weight_7_to_fp16"), val = tensor<fp16, [512, 512, 3]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(246976)))];
|
23 |
+
tensor<fp16, [512]> bias_7_to_fp16 = const()[name = tensor<string, []>("bias_7_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1819904)))];
|
24 |
+
tensor<fp16, [1, 512, 1500]> var_49_cast = conv(bias = bias_7_to_fp16, dilations = var_47, groups = var_36, pad = var_49_pad_0, pad_type = var_49_pad_type_0, strides = var_45, weight = weight_7_to_fp16, x = input_1_cast);
|
25 |
+
tensor<string, []> x_3_mode_0 = const()[name = tensor<string, []>("x_3_mode_0"), val = tensor<string, []>("EXACT")];
|
26 |
+
tensor<fp16, [1, 512, 1500]> x_3_cast = gelu(mode = x_3_mode_0, x = var_49_cast);
|
27 |
+
tensor<int32, [3]> var_54 = const()[name = tensor<string, []>("op_54"), val = tensor<int32, [3]>([0, 2, 1])];
|
28 |
+
tensor<fp16, [1500, 512]> positional_embedding_to_fp16 = const()[name = tensor<string, []>("positional_embedding_to_fp16"), val = tensor<fp16, [1500, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(1820992)))];
|
29 |
+
tensor<fp16, [1, 1500, 512]> transpose_48 = transpose(perm = var_54, x = x_3_cast);
|
30 |
+
tensor<fp16, [1, 1500, 512]> var_57_cast = add(x = transpose_48, y = positional_embedding_to_fp16);
|
31 |
+
tensor<int32, []> var_70 = const()[name = tensor<string, []>("op_70"), val = tensor<int32, []>(-1)];
|
32 |
+
tensor<int32, [1]> var_87_axes_0 = const()[name = tensor<string, []>("op_87_axes_0"), val = tensor<int32, [1]>([-1])];
|
33 |
+
tensor<fp16, [512]> blocks_0_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_0_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3357056)))];
|
34 |
+
tensor<fp16, [512]> blocks_0_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_0_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3358144)))];
|
35 |
+
tensor<fp16, []> var_76_to_fp16 = const()[name = tensor<string, []>("op_76_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
36 |
+
tensor<fp16, [1, 1500, 512]> var_87_cast = layer_norm(axes = var_87_axes_0, beta = blocks_0_attn_ln_bias_to_fp16, epsilon = var_76_to_fp16, gamma = blocks_0_attn_ln_weight_to_fp16, x = var_57_cast);
|
37 |
+
tensor<fp16, [512, 512]> var_98_to_fp16 = const()[name = tensor<string, []>("op_98_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3359232)))];
|
38 |
+
tensor<fp16, [512]> var_99_to_fp16 = const()[name = tensor<string, []>("op_99_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3883584)))];
|
39 |
+
tensor<fp16, [1, 1500, 512]> q_1_cast = linear(bias = var_99_to_fp16, weight = var_98_to_fp16, x = var_87_cast);
|
40 |
+
tensor<fp16, [512, 512]> var_102_to_fp16 = const()[name = tensor<string, []>("op_102_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(3884672)))];
|
41 |
+
tensor<fp16, [512]> k_1_bias_0_to_fp16 = const()[name = tensor<string, []>("k_1_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4409024)))];
|
42 |
+
tensor<fp16, [1, 1500, 512]> k_1_cast = linear(bias = k_1_bias_0_to_fp16, weight = var_102_to_fp16, x = var_87_cast);
|
43 |
+
tensor<fp16, [512, 512]> var_106_to_fp16 = const()[name = tensor<string, []>("op_106_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4410112)))];
|
44 |
+
tensor<fp16, [512]> var_107_to_fp16 = const()[name = tensor<string, []>("op_107_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4934464)))];
|
45 |
+
tensor<fp16, [1, 1500, 512]> v_1_cast = linear(bias = var_107_to_fp16, weight = var_106_to_fp16, x = var_87_cast);
|
46 |
+
tensor<int32, [4]> var_115 = const()[name = tensor<string, []>("op_115"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
47 |
+
tensor<fp16, [1, 1500, 8, 64]> var_116_cast = reshape(shape = var_115, x = q_1_cast);
|
48 |
+
tensor<fp16, [1, 1, 1, 1]> const_42_to_fp16 = const()[name = tensor<string, []>("const_42_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
49 |
+
tensor<fp16, [1, 1500, 8, 64]> q_3_cast = mul(x = var_116_cast, y = const_42_to_fp16);
|
50 |
+
tensor<int32, [4]> var_122 = const()[name = tensor<string, []>("op_122"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
51 |
+
tensor<fp16, [1, 1500, 8, 64]> var_123_cast = reshape(shape = var_122, x = k_1_cast);
|
52 |
+
tensor<fp16, [1, 1, 1, 1]> const_43_to_fp16 = const()[name = tensor<string, []>("const_43_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
53 |
+
tensor<fp16, [1, 1500, 8, 64]> k_3_cast = mul(x = var_123_cast, y = const_43_to_fp16);
|
54 |
+
tensor<int32, [4]> var_129 = const()[name = tensor<string, []>("op_129"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
55 |
+
tensor<fp16, [1, 1500, 8, 64]> var_130_cast = reshape(shape = var_129, x = v_1_cast);
|
56 |
+
tensor<int32, [4]> var_131 = const()[name = tensor<string, []>("op_131"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
57 |
+
tensor<bool, []> qk_1_transpose_x_0 = const()[name = tensor<string, []>("qk_1_transpose_x_0"), val = tensor<bool, []>(false)];
|
58 |
+
tensor<bool, []> qk_1_transpose_y_0 = const()[name = tensor<string, []>("qk_1_transpose_y_0"), val = tensor<bool, []>(false)];
|
59 |
+
tensor<int32, [4]> transpose_12_perm_0 = const()[name = tensor<string, []>("transpose_12_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
60 |
+
tensor<int32, [4]> transpose_13_perm_0 = const()[name = tensor<string, []>("transpose_13_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
61 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_45 = transpose(perm = transpose_13_perm_0, x = k_3_cast);
|
62 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_46 = transpose(perm = transpose_12_perm_0, x = q_3_cast);
|
63 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_1_cast = matmul(transpose_x = qk_1_transpose_x_0, transpose_y = qk_1_transpose_y_0, x = transpose_46, y = transpose_45);
|
64 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_135_cast = softmax(axis = var_70, x = qk_1_cast);
|
65 |
+
tensor<bool, []> var_137_transpose_x_0 = const()[name = tensor<string, []>("op_137_transpose_x_0"), val = tensor<bool, []>(false)];
|
66 |
+
tensor<bool, []> var_137_transpose_y_0 = const()[name = tensor<string, []>("op_137_transpose_y_0"), val = tensor<bool, []>(false)];
|
67 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_47 = transpose(perm = var_131, x = var_130_cast);
|
68 |
+
tensor<fp16, [1, 8, 1500, 64]> var_137_cast = matmul(transpose_x = var_137_transpose_x_0, transpose_y = var_137_transpose_y_0, x = var_135_cast, y = transpose_47);
|
69 |
+
tensor<int32, [4]> var_138 = const()[name = tensor<string, []>("op_138"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
70 |
+
tensor<int32, [3]> concat_0 = const()[name = tensor<string, []>("concat_0"), val = tensor<int32, [3]>([1, 1500, 512])];
|
71 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_44 = transpose(perm = var_138, x = var_137_cast);
|
72 |
+
tensor<fp16, [1, 1500, 512]> x_11_cast = reshape(shape = concat_0, x = transpose_44);
|
73 |
+
tensor<fp16, [512, 512]> var_143_to_fp16 = const()[name = tensor<string, []>("op_143_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(4935552)))];
|
74 |
+
tensor<fp16, [512]> var_144_to_fp16 = const()[name = tensor<string, []>("op_144_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5459904)))];
|
75 |
+
tensor<fp16, [1, 1500, 512]> var_145_cast = linear(bias = var_144_to_fp16, weight = var_143_to_fp16, x = x_11_cast);
|
76 |
+
tensor<fp16, [1, 1500, 512]> x_13_cast = add(x = var_57_cast, y = var_145_cast);
|
77 |
+
tensor<int32, [1]> var_151_axes_0 = const()[name = tensor<string, []>("op_151_axes_0"), val = tensor<int32, [1]>([-1])];
|
78 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_0_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5460992)))];
|
79 |
+
tensor<fp16, [512]> blocks_0_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_0_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5462080)))];
|
80 |
+
tensor<fp16, [1, 1500, 512]> var_151_cast = layer_norm(axes = var_151_axes_0, beta = blocks_0_mlp_ln_bias_to_fp16, epsilon = var_76_to_fp16, gamma = blocks_0_mlp_ln_weight_to_fp16, x = x_13_cast);
|
81 |
+
tensor<fp16, [2048, 512]> var_160_to_fp16 = const()[name = tensor<string, []>("op_160_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(5463168)))];
|
82 |
+
tensor<fp16, [2048]> var_161_to_fp16 = const()[name = tensor<string, []>("op_161_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7560384)))];
|
83 |
+
tensor<fp16, [1, 1500, 2048]> input_9_cast = linear(bias = var_161_to_fp16, weight = var_160_to_fp16, x = var_151_cast);
|
84 |
+
tensor<string, []> x_17_mode_0 = const()[name = tensor<string, []>("x_17_mode_0"), val = tensor<string, []>("EXACT")];
|
85 |
+
tensor<fp16, [1, 1500, 2048]> x_17_cast = gelu(mode = x_17_mode_0, x = input_9_cast);
|
86 |
+
tensor<fp16, [512, 2048]> var_166_to_fp16 = const()[name = tensor<string, []>("op_166_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(7564544)))];
|
87 |
+
tensor<fp16, [512]> var_167_to_fp16 = const()[name = tensor<string, []>("op_167_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9661760)))];
|
88 |
+
tensor<fp16, [1, 1500, 512]> var_168_cast = linear(bias = var_167_to_fp16, weight = var_166_to_fp16, x = x_17_cast);
|
89 |
+
tensor<fp16, [1, 1500, 512]> x_19_cast = add(x = x_13_cast, y = var_168_cast);
|
90 |
+
tensor<int32, []> var_177 = const()[name = tensor<string, []>("op_177"), val = tensor<int32, []>(-1)];
|
91 |
+
tensor<int32, [1]> var_194_axes_0 = const()[name = tensor<string, []>("op_194_axes_0"), val = tensor<int32, [1]>([-1])];
|
92 |
+
tensor<fp16, [512]> blocks_1_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_1_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9662848)))];
|
93 |
+
tensor<fp16, [512]> blocks_1_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_1_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9663936)))];
|
94 |
+
tensor<fp16, []> var_183_to_fp16 = const()[name = tensor<string, []>("op_183_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
95 |
+
tensor<fp16, [1, 1500, 512]> var_194_cast = layer_norm(axes = var_194_axes_0, beta = blocks_1_attn_ln_bias_to_fp16, epsilon = var_183_to_fp16, gamma = blocks_1_attn_ln_weight_to_fp16, x = x_19_cast);
|
96 |
+
tensor<fp16, [512, 512]> var_205_to_fp16 = const()[name = tensor<string, []>("op_205_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(9665024)))];
|
97 |
+
tensor<fp16, [512]> var_206_to_fp16 = const()[name = tensor<string, []>("op_206_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10189376)))];
|
98 |
+
tensor<fp16, [1, 1500, 512]> q_5_cast = linear(bias = var_206_to_fp16, weight = var_205_to_fp16, x = var_194_cast);
|
99 |
+
tensor<fp16, [512, 512]> var_209_to_fp16 = const()[name = tensor<string, []>("op_209_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10190464)))];
|
100 |
+
tensor<fp16, [512]> k_5_bias_0_to_fp16 = const()[name = tensor<string, []>("k_5_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10714816)))];
|
101 |
+
tensor<fp16, [1, 1500, 512]> k_5_cast = linear(bias = k_5_bias_0_to_fp16, weight = var_209_to_fp16, x = var_194_cast);
|
102 |
+
tensor<fp16, [512, 512]> var_213_to_fp16 = const()[name = tensor<string, []>("op_213_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(10715904)))];
|
103 |
+
tensor<fp16, [512]> var_214_to_fp16 = const()[name = tensor<string, []>("op_214_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11240256)))];
|
104 |
+
tensor<fp16, [1, 1500, 512]> v_5_cast = linear(bias = var_214_to_fp16, weight = var_213_to_fp16, x = var_194_cast);
|
105 |
+
tensor<int32, [4]> var_222 = const()[name = tensor<string, []>("op_222"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
106 |
+
tensor<fp16, [1, 1500, 8, 64]> var_223_cast = reshape(shape = var_222, x = q_5_cast);
|
107 |
+
tensor<fp16, [1, 1, 1, 1]> const_44_to_fp16 = const()[name = tensor<string, []>("const_44_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
108 |
+
tensor<fp16, [1, 1500, 8, 64]> q_7_cast = mul(x = var_223_cast, y = const_44_to_fp16);
|
109 |
+
tensor<int32, [4]> var_229 = const()[name = tensor<string, []>("op_229"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
110 |
+
tensor<fp16, [1, 1500, 8, 64]> var_230_cast = reshape(shape = var_229, x = k_5_cast);
|
111 |
+
tensor<fp16, [1, 1, 1, 1]> const_45_to_fp16 = const()[name = tensor<string, []>("const_45_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
112 |
+
tensor<fp16, [1, 1500, 8, 64]> k_7_cast = mul(x = var_230_cast, y = const_45_to_fp16);
|
113 |
+
tensor<int32, [4]> var_236 = const()[name = tensor<string, []>("op_236"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
114 |
+
tensor<fp16, [1, 1500, 8, 64]> var_237_cast = reshape(shape = var_236, x = v_5_cast);
|
115 |
+
tensor<int32, [4]> var_238 = const()[name = tensor<string, []>("op_238"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
116 |
+
tensor<bool, []> qk_3_transpose_x_0 = const()[name = tensor<string, []>("qk_3_transpose_x_0"), val = tensor<bool, []>(false)];
|
117 |
+
tensor<bool, []> qk_3_transpose_y_0 = const()[name = tensor<string, []>("qk_3_transpose_y_0"), val = tensor<bool, []>(false)];
|
118 |
+
tensor<int32, [4]> transpose_14_perm_0 = const()[name = tensor<string, []>("transpose_14_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
119 |
+
tensor<int32, [4]> transpose_15_perm_0 = const()[name = tensor<string, []>("transpose_15_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
120 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_41 = transpose(perm = transpose_15_perm_0, x = k_7_cast);
|
121 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_42 = transpose(perm = transpose_14_perm_0, x = q_7_cast);
|
122 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_3_cast = matmul(transpose_x = qk_3_transpose_x_0, transpose_y = qk_3_transpose_y_0, x = transpose_42, y = transpose_41);
|
123 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_242_cast = softmax(axis = var_177, x = qk_3_cast);
|
124 |
+
tensor<bool, []> var_244_transpose_x_0 = const()[name = tensor<string, []>("op_244_transpose_x_0"), val = tensor<bool, []>(false)];
|
125 |
+
tensor<bool, []> var_244_transpose_y_0 = const()[name = tensor<string, []>("op_244_transpose_y_0"), val = tensor<bool, []>(false)];
|
126 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_43 = transpose(perm = var_238, x = var_237_cast);
|
127 |
+
tensor<fp16, [1, 8, 1500, 64]> var_244_cast = matmul(transpose_x = var_244_transpose_x_0, transpose_y = var_244_transpose_y_0, x = var_242_cast, y = transpose_43);
|
128 |
+
tensor<int32, [4]> var_245 = const()[name = tensor<string, []>("op_245"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
129 |
+
tensor<int32, [3]> concat_1 = const()[name = tensor<string, []>("concat_1"), val = tensor<int32, [3]>([1, 1500, 512])];
|
130 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_40 = transpose(perm = var_245, x = var_244_cast);
|
131 |
+
tensor<fp16, [1, 1500, 512]> x_23_cast = reshape(shape = concat_1, x = transpose_40);
|
132 |
+
tensor<fp16, [512, 512]> var_250_to_fp16 = const()[name = tensor<string, []>("op_250_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11241344)))];
|
133 |
+
tensor<fp16, [512]> var_251_to_fp16 = const()[name = tensor<string, []>("op_251_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11765696)))];
|
134 |
+
tensor<fp16, [1, 1500, 512]> var_252_cast = linear(bias = var_251_to_fp16, weight = var_250_to_fp16, x = x_23_cast);
|
135 |
+
tensor<fp16, [1, 1500, 512]> x_25_cast = add(x = x_19_cast, y = var_252_cast);
|
136 |
+
tensor<int32, [1]> var_258_axes_0 = const()[name = tensor<string, []>("op_258_axes_0"), val = tensor<int32, [1]>([-1])];
|
137 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_1_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11766784)))];
|
138 |
+
tensor<fp16, [512]> blocks_1_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_1_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11767872)))];
|
139 |
+
tensor<fp16, [1, 1500, 512]> var_258_cast = layer_norm(axes = var_258_axes_0, beta = blocks_1_mlp_ln_bias_to_fp16, epsilon = var_183_to_fp16, gamma = blocks_1_mlp_ln_weight_to_fp16, x = x_25_cast);
|
140 |
+
tensor<fp16, [2048, 512]> var_267_to_fp16 = const()[name = tensor<string, []>("op_267_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(11768960)))];
|
141 |
+
tensor<fp16, [2048]> var_268_to_fp16 = const()[name = tensor<string, []>("op_268_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13866176)))];
|
142 |
+
tensor<fp16, [1, 1500, 2048]> input_17_cast = linear(bias = var_268_to_fp16, weight = var_267_to_fp16, x = var_258_cast);
|
143 |
+
tensor<string, []> x_29_mode_0 = const()[name = tensor<string, []>("x_29_mode_0"), val = tensor<string, []>("EXACT")];
|
144 |
+
tensor<fp16, [1, 1500, 2048]> x_29_cast = gelu(mode = x_29_mode_0, x = input_17_cast);
|
145 |
+
tensor<fp16, [512, 2048]> var_273_to_fp16 = const()[name = tensor<string, []>("op_273_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(13870336)))];
|
146 |
+
tensor<fp16, [512]> var_274_to_fp16 = const()[name = tensor<string, []>("op_274_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15967552)))];
|
147 |
+
tensor<fp16, [1, 1500, 512]> var_275_cast = linear(bias = var_274_to_fp16, weight = var_273_to_fp16, x = x_29_cast);
|
148 |
+
tensor<fp16, [1, 1500, 512]> x_31_cast = add(x = x_25_cast, y = var_275_cast);
|
149 |
+
tensor<int32, []> var_284 = const()[name = tensor<string, []>("op_284"), val = tensor<int32, []>(-1)];
|
150 |
+
tensor<int32, [1]> var_301_axes_0 = const()[name = tensor<string, []>("op_301_axes_0"), val = tensor<int32, [1]>([-1])];
|
151 |
+
tensor<fp16, [512]> blocks_2_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_2_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15968640)))];
|
152 |
+
tensor<fp16, [512]> blocks_2_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_2_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15969728)))];
|
153 |
+
tensor<fp16, []> var_290_to_fp16 = const()[name = tensor<string, []>("op_290_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
154 |
+
tensor<fp16, [1, 1500, 512]> var_301_cast = layer_norm(axes = var_301_axes_0, beta = blocks_2_attn_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_attn_ln_weight_to_fp16, x = x_31_cast);
|
155 |
+
tensor<fp16, [512, 512]> var_312_to_fp16 = const()[name = tensor<string, []>("op_312_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(15970816)))];
|
156 |
+
tensor<fp16, [512]> var_313_to_fp16 = const()[name = tensor<string, []>("op_313_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16495168)))];
|
157 |
+
tensor<fp16, [1, 1500, 512]> q_9_cast = linear(bias = var_313_to_fp16, weight = var_312_to_fp16, x = var_301_cast);
|
158 |
+
tensor<fp16, [512, 512]> var_316_to_fp16 = const()[name = tensor<string, []>("op_316_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(16496256)))];
|
159 |
+
tensor<fp16, [512]> k_9_bias_0_to_fp16 = const()[name = tensor<string, []>("k_9_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17020608)))];
|
160 |
+
tensor<fp16, [1, 1500, 512]> k_9_cast = linear(bias = k_9_bias_0_to_fp16, weight = var_316_to_fp16, x = var_301_cast);
|
161 |
+
tensor<fp16, [512, 512]> var_320_to_fp16 = const()[name = tensor<string, []>("op_320_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17021696)))];
|
162 |
+
tensor<fp16, [512]> var_321_to_fp16 = const()[name = tensor<string, []>("op_321_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17546048)))];
|
163 |
+
tensor<fp16, [1, 1500, 512]> v_9_cast = linear(bias = var_321_to_fp16, weight = var_320_to_fp16, x = var_301_cast);
|
164 |
+
tensor<int32, [4]> var_329 = const()[name = tensor<string, []>("op_329"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
165 |
+
tensor<fp16, [1, 1500, 8, 64]> var_330_cast = reshape(shape = var_329, x = q_9_cast);
|
166 |
+
tensor<fp16, [1, 1, 1, 1]> const_46_to_fp16 = const()[name = tensor<string, []>("const_46_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
167 |
+
tensor<fp16, [1, 1500, 8, 64]> q_11_cast = mul(x = var_330_cast, y = const_46_to_fp16);
|
168 |
+
tensor<int32, [4]> var_336 = const()[name = tensor<string, []>("op_336"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
169 |
+
tensor<fp16, [1, 1500, 8, 64]> var_337_cast = reshape(shape = var_336, x = k_9_cast);
|
170 |
+
tensor<fp16, [1, 1, 1, 1]> const_47_to_fp16 = const()[name = tensor<string, []>("const_47_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
171 |
+
tensor<fp16, [1, 1500, 8, 64]> k_11_cast = mul(x = var_337_cast, y = const_47_to_fp16);
|
172 |
+
tensor<int32, [4]> var_343 = const()[name = tensor<string, []>("op_343"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
173 |
+
tensor<fp16, [1, 1500, 8, 64]> var_344_cast = reshape(shape = var_343, x = v_9_cast);
|
174 |
+
tensor<int32, [4]> var_345 = const()[name = tensor<string, []>("op_345"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
175 |
+
tensor<bool, []> qk_5_transpose_x_0 = const()[name = tensor<string, []>("qk_5_transpose_x_0"), val = tensor<bool, []>(false)];
|
176 |
+
tensor<bool, []> qk_5_transpose_y_0 = const()[name = tensor<string, []>("qk_5_transpose_y_0"), val = tensor<bool, []>(false)];
|
177 |
+
tensor<int32, [4]> transpose_16_perm_0 = const()[name = tensor<string, []>("transpose_16_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
178 |
+
tensor<int32, [4]> transpose_17_perm_0 = const()[name = tensor<string, []>("transpose_17_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
179 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_37 = transpose(perm = transpose_17_perm_0, x = k_11_cast);
|
180 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_38 = transpose(perm = transpose_16_perm_0, x = q_11_cast);
|
181 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_5_cast = matmul(transpose_x = qk_5_transpose_x_0, transpose_y = qk_5_transpose_y_0, x = transpose_38, y = transpose_37);
|
182 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_349_cast = softmax(axis = var_284, x = qk_5_cast);
|
183 |
+
tensor<bool, []> var_351_transpose_x_0 = const()[name = tensor<string, []>("op_351_transpose_x_0"), val = tensor<bool, []>(false)];
|
184 |
+
tensor<bool, []> var_351_transpose_y_0 = const()[name = tensor<string, []>("op_351_transpose_y_0"), val = tensor<bool, []>(false)];
|
185 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_39 = transpose(perm = var_345, x = var_344_cast);
|
186 |
+
tensor<fp16, [1, 8, 1500, 64]> var_351_cast = matmul(transpose_x = var_351_transpose_x_0, transpose_y = var_351_transpose_y_0, x = var_349_cast, y = transpose_39);
|
187 |
+
tensor<int32, [4]> var_352 = const()[name = tensor<string, []>("op_352"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
188 |
+
tensor<int32, [3]> concat_2 = const()[name = tensor<string, []>("concat_2"), val = tensor<int32, [3]>([1, 1500, 512])];
|
189 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_36 = transpose(perm = var_352, x = var_351_cast);
|
190 |
+
tensor<fp16, [1, 1500, 512]> x_35_cast = reshape(shape = concat_2, x = transpose_36);
|
191 |
+
tensor<fp16, [512, 512]> var_357_to_fp16 = const()[name = tensor<string, []>("op_357_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(17547136)))];
|
192 |
+
tensor<fp16, [512]> var_358_to_fp16 = const()[name = tensor<string, []>("op_358_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18071488)))];
|
193 |
+
tensor<fp16, [1, 1500, 512]> var_359_cast = linear(bias = var_358_to_fp16, weight = var_357_to_fp16, x = x_35_cast);
|
194 |
+
tensor<fp16, [1, 1500, 512]> x_37_cast = add(x = x_31_cast, y = var_359_cast);
|
195 |
+
tensor<int32, [1]> var_365_axes_0 = const()[name = tensor<string, []>("op_365_axes_0"), val = tensor<int32, [1]>([-1])];
|
196 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_2_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18072576)))];
|
197 |
+
tensor<fp16, [512]> blocks_2_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_2_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18073664)))];
|
198 |
+
tensor<fp16, [1, 1500, 512]> var_365_cast = layer_norm(axes = var_365_axes_0, beta = blocks_2_mlp_ln_bias_to_fp16, epsilon = var_290_to_fp16, gamma = blocks_2_mlp_ln_weight_to_fp16, x = x_37_cast);
|
199 |
+
tensor<fp16, [2048, 512]> var_374_to_fp16 = const()[name = tensor<string, []>("op_374_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(18074752)))];
|
200 |
+
tensor<fp16, [2048]> var_375_to_fp16 = const()[name = tensor<string, []>("op_375_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20171968)))];
|
201 |
+
tensor<fp16, [1, 1500, 2048]> input_25_cast = linear(bias = var_375_to_fp16, weight = var_374_to_fp16, x = var_365_cast);
|
202 |
+
tensor<string, []> x_41_mode_0 = const()[name = tensor<string, []>("x_41_mode_0"), val = tensor<string, []>("EXACT")];
|
203 |
+
tensor<fp16, [1, 1500, 2048]> x_41_cast = gelu(mode = x_41_mode_0, x = input_25_cast);
|
204 |
+
tensor<fp16, [512, 2048]> var_380_to_fp16 = const()[name = tensor<string, []>("op_380_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(20176128)))];
|
205 |
+
tensor<fp16, [512]> var_381_to_fp16 = const()[name = tensor<string, []>("op_381_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22273344)))];
|
206 |
+
tensor<fp16, [1, 1500, 512]> var_382_cast = linear(bias = var_381_to_fp16, weight = var_380_to_fp16, x = x_41_cast);
|
207 |
+
tensor<fp16, [1, 1500, 512]> x_43_cast = add(x = x_37_cast, y = var_382_cast);
|
208 |
+
tensor<int32, []> var_391 = const()[name = tensor<string, []>("op_391"), val = tensor<int32, []>(-1)];
|
209 |
+
tensor<int32, [1]> var_408_axes_0 = const()[name = tensor<string, []>("op_408_axes_0"), val = tensor<int32, [1]>([-1])];
|
210 |
+
tensor<fp16, [512]> blocks_3_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_3_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22274432)))];
|
211 |
+
tensor<fp16, [512]> blocks_3_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_3_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22275520)))];
|
212 |
+
tensor<fp16, []> var_397_to_fp16 = const()[name = tensor<string, []>("op_397_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
213 |
+
tensor<fp16, [1, 1500, 512]> var_408_cast = layer_norm(axes = var_408_axes_0, beta = blocks_3_attn_ln_bias_to_fp16, epsilon = var_397_to_fp16, gamma = blocks_3_attn_ln_weight_to_fp16, x = x_43_cast);
|
214 |
+
tensor<fp16, [512, 512]> var_419_to_fp16 = const()[name = tensor<string, []>("op_419_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22276608)))];
|
215 |
+
tensor<fp16, [512]> var_420_to_fp16 = const()[name = tensor<string, []>("op_420_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22800960)))];
|
216 |
+
tensor<fp16, [1, 1500, 512]> q_13_cast = linear(bias = var_420_to_fp16, weight = var_419_to_fp16, x = var_408_cast);
|
217 |
+
tensor<fp16, [512, 512]> var_423_to_fp16 = const()[name = tensor<string, []>("op_423_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(22802048)))];
|
218 |
+
tensor<fp16, [512]> k_13_bias_0_to_fp16 = const()[name = tensor<string, []>("k_13_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23326400)))];
|
219 |
+
tensor<fp16, [1, 1500, 512]> k_13_cast = linear(bias = k_13_bias_0_to_fp16, weight = var_423_to_fp16, x = var_408_cast);
|
220 |
+
tensor<fp16, [512, 512]> var_427_to_fp16 = const()[name = tensor<string, []>("op_427_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23327488)))];
|
221 |
+
tensor<fp16, [512]> var_428_to_fp16 = const()[name = tensor<string, []>("op_428_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23851840)))];
|
222 |
+
tensor<fp16, [1, 1500, 512]> v_13_cast = linear(bias = var_428_to_fp16, weight = var_427_to_fp16, x = var_408_cast);
|
223 |
+
tensor<int32, [4]> var_436 = const()[name = tensor<string, []>("op_436"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
224 |
+
tensor<fp16, [1, 1500, 8, 64]> var_437_cast = reshape(shape = var_436, x = q_13_cast);
|
225 |
+
tensor<fp16, [1, 1, 1, 1]> const_48_to_fp16 = const()[name = tensor<string, []>("const_48_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
226 |
+
tensor<fp16, [1, 1500, 8, 64]> q_15_cast = mul(x = var_437_cast, y = const_48_to_fp16);
|
227 |
+
tensor<int32, [4]> var_443 = const()[name = tensor<string, []>("op_443"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
228 |
+
tensor<fp16, [1, 1500, 8, 64]> var_444_cast = reshape(shape = var_443, x = k_13_cast);
|
229 |
+
tensor<fp16, [1, 1, 1, 1]> const_49_to_fp16 = const()[name = tensor<string, []>("const_49_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
230 |
+
tensor<fp16, [1, 1500, 8, 64]> k_15_cast = mul(x = var_444_cast, y = const_49_to_fp16);
|
231 |
+
tensor<int32, [4]> var_450 = const()[name = tensor<string, []>("op_450"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
232 |
+
tensor<fp16, [1, 1500, 8, 64]> var_451_cast = reshape(shape = var_450, x = v_13_cast);
|
233 |
+
tensor<int32, [4]> var_452 = const()[name = tensor<string, []>("op_452"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
234 |
+
tensor<bool, []> qk_7_transpose_x_0 = const()[name = tensor<string, []>("qk_7_transpose_x_0"), val = tensor<bool, []>(false)];
|
235 |
+
tensor<bool, []> qk_7_transpose_y_0 = const()[name = tensor<string, []>("qk_7_transpose_y_0"), val = tensor<bool, []>(false)];
|
236 |
+
tensor<int32, [4]> transpose_18_perm_0 = const()[name = tensor<string, []>("transpose_18_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
237 |
+
tensor<int32, [4]> transpose_19_perm_0 = const()[name = tensor<string, []>("transpose_19_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
238 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_33 = transpose(perm = transpose_19_perm_0, x = k_15_cast);
|
239 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_34 = transpose(perm = transpose_18_perm_0, x = q_15_cast);
|
240 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_7_cast = matmul(transpose_x = qk_7_transpose_x_0, transpose_y = qk_7_transpose_y_0, x = transpose_34, y = transpose_33);
|
241 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_456_cast = softmax(axis = var_391, x = qk_7_cast);
|
242 |
+
tensor<bool, []> var_458_transpose_x_0 = const()[name = tensor<string, []>("op_458_transpose_x_0"), val = tensor<bool, []>(false)];
|
243 |
+
tensor<bool, []> var_458_transpose_y_0 = const()[name = tensor<string, []>("op_458_transpose_y_0"), val = tensor<bool, []>(false)];
|
244 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_35 = transpose(perm = var_452, x = var_451_cast);
|
245 |
+
tensor<fp16, [1, 8, 1500, 64]> var_458_cast = matmul(transpose_x = var_458_transpose_x_0, transpose_y = var_458_transpose_y_0, x = var_456_cast, y = transpose_35);
|
246 |
+
tensor<int32, [4]> var_459 = const()[name = tensor<string, []>("op_459"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
247 |
+
tensor<int32, [3]> concat_3 = const()[name = tensor<string, []>("concat_3"), val = tensor<int32, [3]>([1, 1500, 512])];
|
248 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_32 = transpose(perm = var_459, x = var_458_cast);
|
249 |
+
tensor<fp16, [1, 1500, 512]> x_47_cast = reshape(shape = concat_3, x = transpose_32);
|
250 |
+
tensor<fp16, [512, 512]> var_464_to_fp16 = const()[name = tensor<string, []>("op_464_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(23852928)))];
|
251 |
+
tensor<fp16, [512]> var_465_to_fp16 = const()[name = tensor<string, []>("op_465_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24377280)))];
|
252 |
+
tensor<fp16, [1, 1500, 512]> var_466_cast = linear(bias = var_465_to_fp16, weight = var_464_to_fp16, x = x_47_cast);
|
253 |
+
tensor<fp16, [1, 1500, 512]> x_49_cast = add(x = x_43_cast, y = var_466_cast);
|
254 |
+
tensor<int32, [1]> var_472_axes_0 = const()[name = tensor<string, []>("op_472_axes_0"), val = tensor<int32, [1]>([-1])];
|
255 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_3_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24378368)))];
|
256 |
+
tensor<fp16, [512]> blocks_3_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_3_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24379456)))];
|
257 |
+
tensor<fp16, [1, 1500, 512]> var_472_cast = layer_norm(axes = var_472_axes_0, beta = blocks_3_mlp_ln_bias_to_fp16, epsilon = var_397_to_fp16, gamma = blocks_3_mlp_ln_weight_to_fp16, x = x_49_cast);
|
258 |
+
tensor<fp16, [2048, 512]> var_481_to_fp16 = const()[name = tensor<string, []>("op_481_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(24380544)))];
|
259 |
+
tensor<fp16, [2048]> var_482_to_fp16 = const()[name = tensor<string, []>("op_482_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(26477760)))];
|
260 |
+
tensor<fp16, [1, 1500, 2048]> input_33_cast = linear(bias = var_482_to_fp16, weight = var_481_to_fp16, x = var_472_cast);
|
261 |
+
tensor<string, []> x_53_mode_0 = const()[name = tensor<string, []>("x_53_mode_0"), val = tensor<string, []>("EXACT")];
|
262 |
+
tensor<fp16, [1, 1500, 2048]> x_53_cast = gelu(mode = x_53_mode_0, x = input_33_cast);
|
263 |
+
tensor<fp16, [512, 2048]> var_487_to_fp16 = const()[name = tensor<string, []>("op_487_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(26481920)))];
|
264 |
+
tensor<fp16, [512]> var_488_to_fp16 = const()[name = tensor<string, []>("op_488_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28579136)))];
|
265 |
+
tensor<fp16, [1, 1500, 512]> var_489_cast = linear(bias = var_488_to_fp16, weight = var_487_to_fp16, x = x_53_cast);
|
266 |
+
tensor<fp16, [1, 1500, 512]> x_55_cast = add(x = x_49_cast, y = var_489_cast);
|
267 |
+
tensor<int32, []> var_498 = const()[name = tensor<string, []>("op_498"), val = tensor<int32, []>(-1)];
|
268 |
+
tensor<int32, [1]> var_515_axes_0 = const()[name = tensor<string, []>("op_515_axes_0"), val = tensor<int32, [1]>([-1])];
|
269 |
+
tensor<fp16, [512]> blocks_4_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_4_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28580224)))];
|
270 |
+
tensor<fp16, [512]> blocks_4_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_4_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28581312)))];
|
271 |
+
tensor<fp16, []> var_504_to_fp16 = const()[name = tensor<string, []>("op_504_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
272 |
+
tensor<fp16, [1, 1500, 512]> var_515_cast = layer_norm(axes = var_515_axes_0, beta = blocks_4_attn_ln_bias_to_fp16, epsilon = var_504_to_fp16, gamma = blocks_4_attn_ln_weight_to_fp16, x = x_55_cast);
|
273 |
+
tensor<fp16, [512, 512]> var_526_to_fp16 = const()[name = tensor<string, []>("op_526_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(28582400)))];
|
274 |
+
tensor<fp16, [512]> var_527_to_fp16 = const()[name = tensor<string, []>("op_527_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29106752)))];
|
275 |
+
tensor<fp16, [1, 1500, 512]> q_17_cast = linear(bias = var_527_to_fp16, weight = var_526_to_fp16, x = var_515_cast);
|
276 |
+
tensor<fp16, [512, 512]> var_530_to_fp16 = const()[name = tensor<string, []>("op_530_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29107840)))];
|
277 |
+
tensor<fp16, [512]> k_17_bias_0_to_fp16 = const()[name = tensor<string, []>("k_17_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29632192)))];
|
278 |
+
tensor<fp16, [1, 1500, 512]> k_17_cast = linear(bias = k_17_bias_0_to_fp16, weight = var_530_to_fp16, x = var_515_cast);
|
279 |
+
tensor<fp16, [512, 512]> var_534_to_fp16 = const()[name = tensor<string, []>("op_534_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(29633280)))];
|
280 |
+
tensor<fp16, [512]> var_535_to_fp16 = const()[name = tensor<string, []>("op_535_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30157632)))];
|
281 |
+
tensor<fp16, [1, 1500, 512]> v_17_cast = linear(bias = var_535_to_fp16, weight = var_534_to_fp16, x = var_515_cast);
|
282 |
+
tensor<int32, [4]> var_543 = const()[name = tensor<string, []>("op_543"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
283 |
+
tensor<fp16, [1, 1500, 8, 64]> var_544_cast = reshape(shape = var_543, x = q_17_cast);
|
284 |
+
tensor<fp16, [1, 1, 1, 1]> const_50_to_fp16 = const()[name = tensor<string, []>("const_50_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
285 |
+
tensor<fp16, [1, 1500, 8, 64]> q_19_cast = mul(x = var_544_cast, y = const_50_to_fp16);
|
286 |
+
tensor<int32, [4]> var_550 = const()[name = tensor<string, []>("op_550"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
287 |
+
tensor<fp16, [1, 1500, 8, 64]> var_551_cast = reshape(shape = var_550, x = k_17_cast);
|
288 |
+
tensor<fp16, [1, 1, 1, 1]> const_51_to_fp16 = const()[name = tensor<string, []>("const_51_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
289 |
+
tensor<fp16, [1, 1500, 8, 64]> k_19_cast = mul(x = var_551_cast, y = const_51_to_fp16);
|
290 |
+
tensor<int32, [4]> var_557 = const()[name = tensor<string, []>("op_557"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
291 |
+
tensor<fp16, [1, 1500, 8, 64]> var_558_cast = reshape(shape = var_557, x = v_17_cast);
|
292 |
+
tensor<int32, [4]> var_559 = const()[name = tensor<string, []>("op_559"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
293 |
+
tensor<bool, []> qk_9_transpose_x_0 = const()[name = tensor<string, []>("qk_9_transpose_x_0"), val = tensor<bool, []>(false)];
|
294 |
+
tensor<bool, []> qk_9_transpose_y_0 = const()[name = tensor<string, []>("qk_9_transpose_y_0"), val = tensor<bool, []>(false)];
|
295 |
+
tensor<int32, [4]> transpose_20_perm_0 = const()[name = tensor<string, []>("transpose_20_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
296 |
+
tensor<int32, [4]> transpose_21_perm_0 = const()[name = tensor<string, []>("transpose_21_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
297 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_29 = transpose(perm = transpose_21_perm_0, x = k_19_cast);
|
298 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_30 = transpose(perm = transpose_20_perm_0, x = q_19_cast);
|
299 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_9_cast = matmul(transpose_x = qk_9_transpose_x_0, transpose_y = qk_9_transpose_y_0, x = transpose_30, y = transpose_29);
|
300 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_563_cast = softmax(axis = var_498, x = qk_9_cast);
|
301 |
+
tensor<bool, []> var_565_transpose_x_0 = const()[name = tensor<string, []>("op_565_transpose_x_0"), val = tensor<bool, []>(false)];
|
302 |
+
tensor<bool, []> var_565_transpose_y_0 = const()[name = tensor<string, []>("op_565_transpose_y_0"), val = tensor<bool, []>(false)];
|
303 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_31 = transpose(perm = var_559, x = var_558_cast);
|
304 |
+
tensor<fp16, [1, 8, 1500, 64]> var_565_cast = matmul(transpose_x = var_565_transpose_x_0, transpose_y = var_565_transpose_y_0, x = var_563_cast, y = transpose_31);
|
305 |
+
tensor<int32, [4]> var_566 = const()[name = tensor<string, []>("op_566"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
306 |
+
tensor<int32, [3]> concat_4 = const()[name = tensor<string, []>("concat_4"), val = tensor<int32, [3]>([1, 1500, 512])];
|
307 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_28 = transpose(perm = var_566, x = var_565_cast);
|
308 |
+
tensor<fp16, [1, 1500, 512]> x_59_cast = reshape(shape = concat_4, x = transpose_28);
|
309 |
+
tensor<fp16, [512, 512]> var_571_to_fp16 = const()[name = tensor<string, []>("op_571_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30158720)))];
|
310 |
+
tensor<fp16, [512]> var_572_to_fp16 = const()[name = tensor<string, []>("op_572_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30683072)))];
|
311 |
+
tensor<fp16, [1, 1500, 512]> var_573_cast = linear(bias = var_572_to_fp16, weight = var_571_to_fp16, x = x_59_cast);
|
312 |
+
tensor<fp16, [1, 1500, 512]> x_61_cast = add(x = x_55_cast, y = var_573_cast);
|
313 |
+
tensor<int32, [1]> var_579_axes_0 = const()[name = tensor<string, []>("op_579_axes_0"), val = tensor<int32, [1]>([-1])];
|
314 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_4_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30684160)))];
|
315 |
+
tensor<fp16, [512]> blocks_4_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_4_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30685248)))];
|
316 |
+
tensor<fp16, [1, 1500, 512]> var_579_cast = layer_norm(axes = var_579_axes_0, beta = blocks_4_mlp_ln_bias_to_fp16, epsilon = var_504_to_fp16, gamma = blocks_4_mlp_ln_weight_to_fp16, x = x_61_cast);
|
317 |
+
tensor<fp16, [2048, 512]> var_588_to_fp16 = const()[name = tensor<string, []>("op_588_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(30686336)))];
|
318 |
+
tensor<fp16, [2048]> var_589_to_fp16 = const()[name = tensor<string, []>("op_589_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(32783552)))];
|
319 |
+
tensor<fp16, [1, 1500, 2048]> input_41_cast = linear(bias = var_589_to_fp16, weight = var_588_to_fp16, x = var_579_cast);
|
320 |
+
tensor<string, []> x_65_mode_0 = const()[name = tensor<string, []>("x_65_mode_0"), val = tensor<string, []>("EXACT")];
|
321 |
+
tensor<fp16, [1, 1500, 2048]> x_65_cast = gelu(mode = x_65_mode_0, x = input_41_cast);
|
322 |
+
tensor<fp16, [512, 2048]> var_594_to_fp16 = const()[name = tensor<string, []>("op_594_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(32787712)))];
|
323 |
+
tensor<fp16, [512]> var_595_to_fp16 = const()[name = tensor<string, []>("op_595_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34884928)))];
|
324 |
+
tensor<fp16, [1, 1500, 512]> var_596_cast = linear(bias = var_595_to_fp16, weight = var_594_to_fp16, x = x_65_cast);
|
325 |
+
tensor<fp16, [1, 1500, 512]> x_67_cast = add(x = x_61_cast, y = var_596_cast);
|
326 |
+
tensor<int32, []> var_605 = const()[name = tensor<string, []>("op_605"), val = tensor<int32, []>(-1)];
|
327 |
+
tensor<int32, [1]> var_622_axes_0 = const()[name = tensor<string, []>("op_622_axes_0"), val = tensor<int32, [1]>([-1])];
|
328 |
+
tensor<fp16, [512]> blocks_5_attn_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_5_attn_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34886016)))];
|
329 |
+
tensor<fp16, [512]> blocks_5_attn_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_5_attn_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34887104)))];
|
330 |
+
tensor<fp16, []> var_611_to_fp16 = const()[name = tensor<string, []>("op_611_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
331 |
+
tensor<fp16, [1, 1500, 512]> var_622_cast = layer_norm(axes = var_622_axes_0, beta = blocks_5_attn_ln_bias_to_fp16, epsilon = var_611_to_fp16, gamma = blocks_5_attn_ln_weight_to_fp16, x = x_67_cast);
|
332 |
+
tensor<fp16, [512, 512]> var_633_to_fp16 = const()[name = tensor<string, []>("op_633_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(34888192)))];
|
333 |
+
tensor<fp16, [512]> var_634_to_fp16 = const()[name = tensor<string, []>("op_634_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35412544)))];
|
334 |
+
tensor<fp16, [1, 1500, 512]> q_21_cast = linear(bias = var_634_to_fp16, weight = var_633_to_fp16, x = var_622_cast);
|
335 |
+
tensor<fp16, [512, 512]> var_637_to_fp16 = const()[name = tensor<string, []>("op_637_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35413632)))];
|
336 |
+
tensor<fp16, [512]> k_21_bias_0_to_fp16 = const()[name = tensor<string, []>("k_21_bias_0_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35937984)))];
|
337 |
+
tensor<fp16, [1, 1500, 512]> k_21_cast = linear(bias = k_21_bias_0_to_fp16, weight = var_637_to_fp16, x = var_622_cast);
|
338 |
+
tensor<fp16, [512, 512]> var_641_to_fp16 = const()[name = tensor<string, []>("op_641_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(35939072)))];
|
339 |
+
tensor<fp16, [512]> var_642_to_fp16 = const()[name = tensor<string, []>("op_642_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36463424)))];
|
340 |
+
tensor<fp16, [1, 1500, 512]> v_21_cast = linear(bias = var_642_to_fp16, weight = var_641_to_fp16, x = var_622_cast);
|
341 |
+
tensor<int32, [4]> var_650 = const()[name = tensor<string, []>("op_650"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
342 |
+
tensor<fp16, [1, 1500, 8, 64]> var_651_cast = reshape(shape = var_650, x = q_21_cast);
|
343 |
+
tensor<fp16, [1, 1, 1, 1]> const_52_to_fp16 = const()[name = tensor<string, []>("const_52_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
344 |
+
tensor<fp16, [1, 1500, 8, 64]> q_cast = mul(x = var_651_cast, y = const_52_to_fp16);
|
345 |
+
tensor<int32, [4]> var_657 = const()[name = tensor<string, []>("op_657"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
346 |
+
tensor<fp16, [1, 1500, 8, 64]> var_658_cast = reshape(shape = var_657, x = k_21_cast);
|
347 |
+
tensor<fp16, [1, 1, 1, 1]> const_53_to_fp16 = const()[name = tensor<string, []>("const_53_to_fp16"), val = tensor<fp16, [1, 1, 1, 1]>([[[[0x1.6ap-2]]]])];
|
348 |
+
tensor<fp16, [1, 1500, 8, 64]> k_cast = mul(x = var_658_cast, y = const_53_to_fp16);
|
349 |
+
tensor<int32, [4]> var_664 = const()[name = tensor<string, []>("op_664"), val = tensor<int32, [4]>([1, 1500, 8, -1])];
|
350 |
+
tensor<fp16, [1, 1500, 8, 64]> var_665_cast = reshape(shape = var_664, x = v_21_cast);
|
351 |
+
tensor<int32, [4]> var_666 = const()[name = tensor<string, []>("op_666"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
352 |
+
tensor<bool, []> qk_transpose_x_0 = const()[name = tensor<string, []>("qk_transpose_x_0"), val = tensor<bool, []>(false)];
|
353 |
+
tensor<bool, []> qk_transpose_y_0 = const()[name = tensor<string, []>("qk_transpose_y_0"), val = tensor<bool, []>(false)];
|
354 |
+
tensor<int32, [4]> transpose_22_perm_0 = const()[name = tensor<string, []>("transpose_22_perm_0"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
355 |
+
tensor<int32, [4]> transpose_23_perm_0 = const()[name = tensor<string, []>("transpose_23_perm_0"), val = tensor<int32, [4]>([0, 2, 3, 1])];
|
356 |
+
tensor<fp16, [1, 8, 64, 1500]> transpose_25 = transpose(perm = transpose_23_perm_0, x = k_cast);
|
357 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_26 = transpose(perm = transpose_22_perm_0, x = q_cast);
|
358 |
+
tensor<fp16, [1, 8, 1500, 1500]> qk_cast = matmul(transpose_x = qk_transpose_x_0, transpose_y = qk_transpose_y_0, x = transpose_26, y = transpose_25);
|
359 |
+
tensor<fp16, [1, 8, 1500, 1500]> var_670_cast = softmax(axis = var_605, x = qk_cast);
|
360 |
+
tensor<bool, []> var_672_transpose_x_0 = const()[name = tensor<string, []>("op_672_transpose_x_0"), val = tensor<bool, []>(false)];
|
361 |
+
tensor<bool, []> var_672_transpose_y_0 = const()[name = tensor<string, []>("op_672_transpose_y_0"), val = tensor<bool, []>(false)];
|
362 |
+
tensor<fp16, [1, 8, 1500, 64]> transpose_27 = transpose(perm = var_666, x = var_665_cast);
|
363 |
+
tensor<fp16, [1, 8, 1500, 64]> var_672_cast = matmul(transpose_x = var_672_transpose_x_0, transpose_y = var_672_transpose_y_0, x = var_670_cast, y = transpose_27);
|
364 |
+
tensor<int32, [4]> var_673 = const()[name = tensor<string, []>("op_673"), val = tensor<int32, [4]>([0, 2, 1, 3])];
|
365 |
+
tensor<int32, [3]> concat_5 = const()[name = tensor<string, []>("concat_5"), val = tensor<int32, [3]>([1, 1500, 512])];
|
366 |
+
tensor<fp16, [1, 1500, 8, 64]> transpose_24 = transpose(perm = var_673, x = var_672_cast);
|
367 |
+
tensor<fp16, [1, 1500, 512]> x_71_cast = reshape(shape = concat_5, x = transpose_24);
|
368 |
+
tensor<fp16, [512, 512]> var_678_to_fp16 = const()[name = tensor<string, []>("op_678_to_fp16"), val = tensor<fp16, [512, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36464512)))];
|
369 |
+
tensor<fp16, [512]> var_679_to_fp16 = const()[name = tensor<string, []>("op_679_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36988864)))];
|
370 |
+
tensor<fp16, [1, 1500, 512]> var_680_cast = linear(bias = var_679_to_fp16, weight = var_678_to_fp16, x = x_71_cast);
|
371 |
+
tensor<fp16, [1, 1500, 512]> x_73_cast = add(x = x_67_cast, y = var_680_cast);
|
372 |
+
tensor<int32, [1]> var_686_axes_0 = const()[name = tensor<string, []>("op_686_axes_0"), val = tensor<int32, [1]>([-1])];
|
373 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_weight_to_fp16 = const()[name = tensor<string, []>("blocks_5_mlp_ln_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36989952)))];
|
374 |
+
tensor<fp16, [512]> blocks_5_mlp_ln_bias_to_fp16 = const()[name = tensor<string, []>("blocks_5_mlp_ln_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36991040)))];
|
375 |
+
tensor<fp16, [1, 1500, 512]> var_686_cast = layer_norm(axes = var_686_axes_0, beta = blocks_5_mlp_ln_bias_to_fp16, epsilon = var_611_to_fp16, gamma = blocks_5_mlp_ln_weight_to_fp16, x = x_73_cast);
|
376 |
+
tensor<fp16, [2048, 512]> var_695_to_fp16 = const()[name = tensor<string, []>("op_695_to_fp16"), val = tensor<fp16, [2048, 512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(36992128)))];
|
377 |
+
tensor<fp16, [2048]> var_696_to_fp16 = const()[name = tensor<string, []>("op_696_to_fp16"), val = tensor<fp16, [2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39089344)))];
|
378 |
+
tensor<fp16, [1, 1500, 2048]> input_49_cast = linear(bias = var_696_to_fp16, weight = var_695_to_fp16, x = var_686_cast);
|
379 |
+
tensor<string, []> x_77_mode_0 = const()[name = tensor<string, []>("x_77_mode_0"), val = tensor<string, []>("EXACT")];
|
380 |
+
tensor<fp16, [1, 1500, 2048]> x_77_cast = gelu(mode = x_77_mode_0, x = input_49_cast);
|
381 |
+
tensor<fp16, [512, 2048]> var_701_to_fp16 = const()[name = tensor<string, []>("op_701_to_fp16"), val = tensor<fp16, [512, 2048]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(39093504)))];
|
382 |
+
tensor<fp16, [512]> var_702_to_fp16 = const()[name = tensor<string, []>("op_702_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41190720)))];
|
383 |
+
tensor<fp16, [1, 1500, 512]> var_703_cast = linear(bias = var_702_to_fp16, weight = var_701_to_fp16, x = x_77_cast);
|
384 |
+
tensor<fp16, [1, 1500, 512]> x_cast = add(x = x_73_cast, y = var_703_cast);
|
385 |
+
tensor<int32, [1]> var_716_axes_0 = const()[name = tensor<string, []>("op_716_axes_0"), val = tensor<int32, [1]>([-1])];
|
386 |
+
tensor<fp16, [512]> ln_post_weight_to_fp16 = const()[name = tensor<string, []>("ln_post_weight_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41191808)))];
|
387 |
+
tensor<fp16, [512]> ln_post_bias_to_fp16 = const()[name = tensor<string, []>("ln_post_bias_to_fp16"), val = tensor<fp16, [512]>(BLOBFILE(path = tensor<string, []>("@model_path/weights/weight.bin"), offset = tensor<uint64, []>(41192896)))];
|
388 |
+
tensor<fp16, []> var_707_to_fp16 = const()[name = tensor<string, []>("op_707_to_fp16"), val = tensor<fp16, []>(0x1.5p-17)];
|
389 |
+
tensor<fp16, [1, 1500, 512]> var_716_cast = layer_norm(axes = var_716_axes_0, beta = ln_post_bias_to_fp16, epsilon = var_707_to_fp16, gamma = ln_post_weight_to_fp16, x = x_cast);
|
390 |
+
tensor<string, []> var_716_cast_to_fp32_dtype_0 = const()[name = tensor<string, []>("op_716_cast_to_fp32_dtype_0"), val = tensor<string, []>("fp32")];
|
391 |
+
tensor<fp32, [1, 1500, 512]> output = cast(dtype = var_716_cast_to_fp32_dtype_0, x = var_716_cast);
|
392 |
+
} -> (output);
|
393 |
+
}
|
ggml-base.en-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1578c2b8925c0ff867a8bb96dd56c0eb75df3b909ca9507dc2aa1e437c296dc9
|
3 |
+
size 41193984
|
ggml-large-v1-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:205f888f1f31bd06ff6650bec836e332e6f84f28dfbc2c00378559162b3584f4
|
3 |
+
size 1177530049
|
ggml-large-v1-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b73481ce4a6af49154956c7f9c72dc02d96448fa69651f5c5a2124edfc8e31
|
3 |
+
size 243
|
ggml-large-v1-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-large-v1-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 192,
|
23 |
+
"Matmul" : 64,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 32,
|
27 |
+
"Add" : 65,
|
28 |
+
"LayerNorm" : 65,
|
29 |
+
"Mul" : 64,
|
30 |
+
"Transpose" : 129,
|
31 |
+
"Gelu" : 34,
|
32 |
+
"Reshape" : 128
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"visionOS" : "1.0",
|
40 |
+
"watchOS" : "8.0",
|
41 |
+
"iOS" : "15.0",
|
42 |
+
"macCatalyst" : "15.0"
|
43 |
+
},
|
44 |
+
"modelType" : {
|
45 |
+
"name" : "MLModelType_mlProgram"
|
46 |
+
},
|
47 |
+
"userDefinedMetadata" : {
|
48 |
+
|
49 |
+
},
|
50 |
+
"inputSchema" : [
|
51 |
+
{
|
52 |
+
"hasShapeFlexibility" : "0",
|
53 |
+
"isOptional" : "0",
|
54 |
+
"dataType" : "Float32",
|
55 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
56 |
+
"shortDescription" : "",
|
57 |
+
"shape" : "[1, 80, 3000]",
|
58 |
+
"name" : "logmel_data",
|
59 |
+
"type" : "MultiArray"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"generatedClassName" : "coreml_encoder_large_v1",
|
63 |
+
"method" : "predict"
|
64 |
+
}
|
65 |
+
]
|
ggml-large-v1-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-large-v1-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fe6163af221e89e96ebdd4163bddbf79670be7ee6aac34f1d662ce42f6fb014d
|
3 |
+
size 1273684480
|
ggml-large-v2-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:08d4306667aa7378a8ed9ecbdc94337fe01a2d71c9afe40c4e8dfb967f7bfd41
|
3 |
+
size 1174643634
|
ggml-large-v2-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b73481ce4a6af49154956c7f9c72dc02d96448fa69651f5c5a2124edfc8e31
|
3 |
+
size 243
|
ggml-large-v2-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-large-v2-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 192,
|
23 |
+
"Matmul" : 64,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 32,
|
27 |
+
"Add" : 65,
|
28 |
+
"LayerNorm" : 65,
|
29 |
+
"Mul" : 64,
|
30 |
+
"Transpose" : 129,
|
31 |
+
"Gelu" : 34,
|
32 |
+
"Reshape" : 128
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"visionOS" : "1.0",
|
40 |
+
"watchOS" : "8.0",
|
41 |
+
"iOS" : "15.0",
|
42 |
+
"macCatalyst" : "15.0"
|
43 |
+
},
|
44 |
+
"modelType" : {
|
45 |
+
"name" : "MLModelType_mlProgram"
|
46 |
+
},
|
47 |
+
"userDefinedMetadata" : {
|
48 |
+
|
49 |
+
},
|
50 |
+
"inputSchema" : [
|
51 |
+
{
|
52 |
+
"hasShapeFlexibility" : "0",
|
53 |
+
"isOptional" : "0",
|
54 |
+
"dataType" : "Float32",
|
55 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
56 |
+
"shortDescription" : "",
|
57 |
+
"shape" : "[1, 80, 3000]",
|
58 |
+
"name" : "logmel_data",
|
59 |
+
"type" : "MultiArray"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"generatedClassName" : "coreml_encoder_large_v2",
|
63 |
+
"method" : "predict"
|
64 |
+
}
|
65 |
+
]
|
ggml-large-v2-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-large-v2-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:42f92759b6f55ec227a3cb7e042c0424219cc781818ed3b8b0e72743714ed5d7
|
3 |
+
size 1273684480
|
ggml-large-v3-encoder.mlmodelc.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9be410daad332c1756c34aa119479ef0b0de80c770b094da4ab5cc29ffa417ee
|
3 |
+
size 1174643677
|
ggml-large-v3-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a9b73481ce4a6af49154956c7f9c72dc02d96448fa69651f5c5a2124edfc8e31
|
3 |
+
size 243
|
ggml-large-v3-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-large-v3-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 192,
|
23 |
+
"Matmul" : 64,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 32,
|
27 |
+
"Add" : 65,
|
28 |
+
"LayerNorm" : 65,
|
29 |
+
"Mul" : 64,
|
30 |
+
"Transpose" : 129,
|
31 |
+
"Gelu" : 34,
|
32 |
+
"Reshape" : 128
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"visionOS" : "1.0",
|
40 |
+
"watchOS" : "8.0",
|
41 |
+
"iOS" : "15.0",
|
42 |
+
"macCatalyst" : "15.0"
|
43 |
+
},
|
44 |
+
"modelType" : {
|
45 |
+
"name" : "MLModelType_mlProgram"
|
46 |
+
},
|
47 |
+
"userDefinedMetadata" : {
|
48 |
+
|
49 |
+
},
|
50 |
+
"inputSchema" : [
|
51 |
+
{
|
52 |
+
"hasShapeFlexibility" : "0",
|
53 |
+
"isOptional" : "0",
|
54 |
+
"dataType" : "Float32",
|
55 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
56 |
+
"shortDescription" : "",
|
57 |
+
"shape" : "[1, 80, 3000]",
|
58 |
+
"name" : "logmel_data",
|
59 |
+
"type" : "MultiArray"
|
60 |
+
}
|
61 |
+
],
|
62 |
+
"generatedClassName" : "coreml_encoder_large",
|
63 |
+
"method" : "predict"
|
64 |
+
}
|
65 |
+
]
|
ggml-large-v3-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-large-v3-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3c79ca8b3de455956bb7e2af31f525413431950048a54b2e4c72c39d8c5acc7
|
3 |
+
size 1273684480
|
ggml-medium-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 567829413
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:991295c77a7f73bd04b9310e8ca2aa279826acb7c643f7973cd27fa892487377
|
3 |
size 567829413
|
ggml-medium-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adbe456375e7eb3407732a426ecb65bbda86860e4aa801f3a696b70b8a533cdd
|
3 |
+
size 207
|
ggml-medium-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-medium-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 144,
|
23 |
+
"Matmul" : 48,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 24,
|
27 |
+
"Add" : 49,
|
28 |
+
"LayerNorm" : 49,
|
29 |
+
"Mul" : 48,
|
30 |
+
"Transpose" : 97,
|
31 |
+
"Gelu" : 26,
|
32 |
+
"Reshape" : 96
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"watchOS" : "8.0",
|
40 |
+
"iOS" : "15.0",
|
41 |
+
"macCatalyst" : "15.0"
|
42 |
+
},
|
43 |
+
"modelType" : {
|
44 |
+
"name" : "MLModelType_mlProgram"
|
45 |
+
},
|
46 |
+
"userDefinedMetadata" : {
|
47 |
+
|
48 |
+
},
|
49 |
+
"inputSchema" : [
|
50 |
+
{
|
51 |
+
"hasShapeFlexibility" : "0",
|
52 |
+
"isOptional" : "0",
|
53 |
+
"dataType" : "Float32",
|
54 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
55 |
+
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 80, 3000]",
|
57 |
+
"name" : "logmel_data",
|
58 |
+
"type" : "MultiArray"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"generatedClassName" : "coreml_encoder_medium",
|
62 |
+
"method" : "predict"
|
63 |
+
}
|
64 |
+
]
|
ggml-medium-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-medium-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6a188b0e4e3109f28f38f1f47ea2497ffe623923419df8e1ae12cb5f809a1815
|
3 |
+
size 614507008
|
ggml-medium.en-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 566993085
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:57cf30e4542de7ce7b798573d99e3198ebc435c2fd071672f9fd5c71d2984b99
|
3 |
size 566993085
|
ggml-medium.en-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:adbe456375e7eb3407732a426ecb65bbda86860e4aa801f3a696b70b8a533cdd
|
3 |
+
size 207
|
ggml-medium.en-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-medium.en-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 144,
|
23 |
+
"Matmul" : 48,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 24,
|
27 |
+
"Add" : 49,
|
28 |
+
"LayerNorm" : 49,
|
29 |
+
"Mul" : 48,
|
30 |
+
"Transpose" : 97,
|
31 |
+
"Gelu" : 26,
|
32 |
+
"Reshape" : 96
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"watchOS" : "8.0",
|
40 |
+
"iOS" : "15.0",
|
41 |
+
"macCatalyst" : "15.0"
|
42 |
+
},
|
43 |
+
"modelType" : {
|
44 |
+
"name" : "MLModelType_mlProgram"
|
45 |
+
},
|
46 |
+
"userDefinedMetadata" : {
|
47 |
+
|
48 |
+
},
|
49 |
+
"inputSchema" : [
|
50 |
+
{
|
51 |
+
"hasShapeFlexibility" : "0",
|
52 |
+
"isOptional" : "0",
|
53 |
+
"dataType" : "Float32",
|
54 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
55 |
+
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 80, 3000]",
|
57 |
+
"name" : "logmel_data",
|
58 |
+
"type" : "MultiArray"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"generatedClassName" : "coreml_encoder_medium_en",
|
62 |
+
"method" : "predict"
|
63 |
+
}
|
64 |
+
]
|
ggml-medium.en-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-medium.en-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:63a6c6a2c6cb26aaca930ccc03fe96e2e5820d1ae2802010900eff36b226674d
|
3 |
+
size 614507008
|
ggml-small-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 163083239
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:c8b65b12409d1fd32029d42992903f4e5aef6679da3a4835bcb85738a19e1057
|
3 |
size 163083239
|
ggml-small-encoder.mlmodelc/analytics/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:18ad2072ae82872c2ba8a187071e1e7d6c1105253685e7aa95138adcf07874e0
|
3 |
+
size 207
|
ggml-small-encoder.mlmodelc/coremldata.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:05fe28591b40616fa0c34ad7b853133623f5300923ec812acb11459c411acf3b
|
3 |
+
size 149
|
ggml-small-encoder.mlmodelc/metadata.json
ADDED
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
[
|
2 |
+
{
|
3 |
+
"metadataOutputVersion" : "3.0",
|
4 |
+
"storagePrecision" : "Float16",
|
5 |
+
"outputSchema" : [
|
6 |
+
{
|
7 |
+
"hasShapeFlexibility" : "0",
|
8 |
+
"isOptional" : "0",
|
9 |
+
"dataType" : "Float32",
|
10 |
+
"formattedType" : "MultiArray (Float32)",
|
11 |
+
"shortDescription" : "",
|
12 |
+
"shape" : "[]",
|
13 |
+
"name" : "output",
|
14 |
+
"type" : "MultiArray"
|
15 |
+
}
|
16 |
+
],
|
17 |
+
"modelParameters" : [
|
18 |
+
|
19 |
+
],
|
20 |
+
"specificationVersion" : 6,
|
21 |
+
"mlProgramOperationTypeHistogram" : {
|
22 |
+
"Linear" : 72,
|
23 |
+
"Matmul" : 24,
|
24 |
+
"Cast" : 2,
|
25 |
+
"Conv" : 2,
|
26 |
+
"Softmax" : 12,
|
27 |
+
"Add" : 25,
|
28 |
+
"LayerNorm" : 25,
|
29 |
+
"Mul" : 24,
|
30 |
+
"Transpose" : 49,
|
31 |
+
"Gelu" : 14,
|
32 |
+
"Reshape" : 48
|
33 |
+
},
|
34 |
+
"computePrecision" : "Mixed (Float16, Float32, Int32)",
|
35 |
+
"isUpdatable" : "0",
|
36 |
+
"availability" : {
|
37 |
+
"macOS" : "12.0",
|
38 |
+
"tvOS" : "15.0",
|
39 |
+
"watchOS" : "8.0",
|
40 |
+
"iOS" : "15.0",
|
41 |
+
"macCatalyst" : "15.0"
|
42 |
+
},
|
43 |
+
"modelType" : {
|
44 |
+
"name" : "MLModelType_mlProgram"
|
45 |
+
},
|
46 |
+
"userDefinedMetadata" : {
|
47 |
+
|
48 |
+
},
|
49 |
+
"inputSchema" : [
|
50 |
+
{
|
51 |
+
"hasShapeFlexibility" : "0",
|
52 |
+
"isOptional" : "0",
|
53 |
+
"dataType" : "Float32",
|
54 |
+
"formattedType" : "MultiArray (Float32 1 × 80 × 3000)",
|
55 |
+
"shortDescription" : "",
|
56 |
+
"shape" : "[1, 80, 3000]",
|
57 |
+
"name" : "logmel_data",
|
58 |
+
"type" : "MultiArray"
|
59 |
+
}
|
60 |
+
],
|
61 |
+
"generatedClassName" : "coreml_encoder_small",
|
62 |
+
"method" : "predict"
|
63 |
+
}
|
64 |
+
]
|
ggml-small-encoder.mlmodelc/model.mil
ADDED
The diff for this file is too large to render.
See raw diff
|
|
ggml-small-encoder.mlmodelc/weights/weight.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:87eed4ae76f11a2d4a50786bc7423d4b45c2d0d9ca05577a3bd2557452072eaf
|
3 |
+
size 176339456
|
ggml-small.en-encoder.mlmodelc.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 162952446
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:677fad005c458eba9a1d69a8e4a0bef1b129b208585ca90a4dd8ba4f8610eaed
|
3 |
size 162952446
|