saifhmb commited on
Commit
f7f4d3e
·
verified ·
1 Parent(s): 141d52d

pushing model to the Hugging Face Hub

Browse files
Files changed (3) hide show
  1. README.md +79 -66
  2. config.json +1 -1
  3. skops-89qohtne.pkl +3 -0
README.md CHANGED
@@ -4,9 +4,8 @@ tags:
4
  - sklearn
5
  - skops
6
  - tabular-classification
7
- - finance
8
  model_format: pickle
9
- model_file: skops-uv7zld8n.pkl
10
  widget:
11
  - structuredData:
12
  AGE:
@@ -34,9 +33,9 @@ widget:
34
  - divsepwid
35
  - 'single '
36
  MORTGAGE:
37
- - 'y'
38
- - 'y'
39
- - 'n'
40
  NUMCARDS:
41
  - 2
42
  - 6
@@ -49,100 +48,114 @@ widget:
49
  - 3
50
  - 5
51
  - 2
52
- datasets:
53
- - saifhmb/CreditCardRisk
54
  ---
55
 
56
  # Model description
57
 
58
- This is a logistic regression model trained on customers' credit card risk data in a bank using sklearn library.
59
- The model predicts whether a customer is worth issuing a credit card or not. The full dataset can be viewed at the following link: https://huggingface.co/datasets/saifhmb/CreditCardRisk
60
 
 
61
 
62
- ## Training Procedure
63
 
64
- The data preprocessing steps applied include the following:
65
- - Dropping high cardinality features, specifically ID
66
- - Transforming and Encoding categorical features namely: GENDER, MARITAL, HOWPAID, MORTGAGE and the target variable, RISK
67
- - Splitting the dataset into training/test set using 85/15 split ratio
68
- - Applying feature scaling on all features
69
 
 
70
 
71
  ### Hyperparameters
72
 
73
  <details>
74
  <summary> Click to expand </summary>
75
 
76
- | Hyperparameter | Value |
77
- |-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
78
- | memory | |
79
- | steps | [('preprocessor', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])])), ('classifier', LogisticRegression())] |
80
- | verbose | False |
81
- | preprocessor | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])]) |
82
- | classifier | LogisticRegression() |
83
- | preprocessor__n_jobs | |
84
- | preprocessor__remainder | passthrough |
85
- | preprocessor__sparse_threshold | 0.3 |
86
- | preprocessor__transformer_weights | |
87
- | preprocessor__transformers | [('cat', Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE'])] |
88
- | preprocessor__verbose | False |
89
- | preprocessor__verbose_feature_names_out | True |
90
- | preprocessor__cat | Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
91
- | preprocessor__cat__memory | |
92
- | preprocessor__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore'))] |
93
- | preprocessor__cat__verbose | False |
94
- | preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
95
- | preprocessor__cat__onehot__categories | auto |
96
- | preprocessor__cat__onehot__drop | |
97
- | preprocessor__cat__onehot__dtype | <class 'numpy.float64'> |
98
- | preprocessor__cat__onehot__handle_unknown | ignore |
99
- | preprocessor__cat__onehot__max_categories | |
100
- | preprocessor__cat__onehot__min_frequency | |
101
- | preprocessor__cat__onehot__sparse | deprecated |
102
- | preprocessor__cat__onehot__sparse_output | True |
103
- | classifier__C | 1.0 |
104
- | classifier__class_weight | |
105
- | classifier__dual | False |
106
- | classifier__fit_intercept | True |
107
- | classifier__intercept_scaling | 1 |
108
- | classifier__l1_ratio | |
109
- | classifier__max_iter | 100 |
110
- | classifier__multi_class | auto |
111
- | classifier__n_jobs | |
112
- | classifier__penalty | l2 |
113
- | classifier__random_state | |
114
- | classifier__solver | lbfgs |
115
- | classifier__tol | 0.0001 |
116
- | classifier__verbose | 0 |
117
- | classifier__warm_start | False |
 
 
 
 
 
 
 
 
118
 
119
  </details>
120
 
121
  ### Model Plot
122
 
123
- <style>#sk-container-id-16 {color: black;background-color: white;}#sk-container-id-16 pre{padding: 0;}#sk-container-id-16 div.sk-toggleable {background-color: white;}#sk-container-id-16 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-16 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-16 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-16 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-16 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-16 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-16 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-16 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-16 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-16 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-16 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-16 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-16 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-16 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-16 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-16 div.sk-item {position: relative;z-index: 1;}#sk-container-id-16 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-16 div.sk-item::before, #sk-container-id-16 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-16 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-16 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-16 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-16 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-16 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-16 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-16 div.sk-label-container {text-align: center;}#sk-container-id-16 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-16 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-16" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])),(&#x27;classifier&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-106" type="checkbox" ><label for="sk-estimator-id-106" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])),(&#x27;classifier&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-107" type="checkbox" ><label for="sk-estimator-id-107" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;])])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-108" type="checkbox" ><label for="sk-estimator-id-108" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-109" type="checkbox" ><label for="sk-estimator-id-109" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-110" type="checkbox" ><label for="sk-estimator-id-110" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-111" type="checkbox" ><label for="sk-estimator-id-111" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-112" type="checkbox" ><label for="sk-estimator-id-112" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
124
 
125
  ## Evaluation Results
126
- - The target variable, RISK is multiclass. In sklearn, precision and recall functions have a parameter called,
127
- average. This parameter is required for a multiclass/multilabel target. average = 'micro' was used to calculate
128
- the precision and recall metrics globally by counting the total true positives, false negatives and false positives
129
 
130
  | Metric | Value |
131
  |-----------|----------|
132
- | accuracy | 0.663957 |
133
- | precision | 0.663957 |
134
- | recall | 0.663957 |
135
 
136
  ### Confusion Matrix
137
 
138
  ![Confusion Matrix](confusion_matrix.png)
139
 
 
 
 
140
 
141
  # Model Card Authors
142
 
143
- This model card is written by following authors: Seifullah Bello
144
 
 
145
 
146
  # Model Card Contact
147
 
148
- You can contact the model card authors through following channels: saifhmb@gmail.com
 
 
 
 
 
 
 
 
 
 
 
4
  - sklearn
5
  - skops
6
  - tabular-classification
 
7
  model_format: pickle
8
+ model_file: skops-89qohtne.pkl
9
  widget:
10
  - structuredData:
11
  AGE:
 
33
  - divsepwid
34
  - 'single '
35
  MORTGAGE:
36
+ - y
37
+ - y
38
+ - n
39
  NUMCARDS:
40
  - 2
41
  - 6
 
48
  - 3
49
  - 5
50
  - 2
 
 
51
  ---
52
 
53
  # Model description
54
 
55
+ [More Information Needed]
 
56
 
57
+ ## Intended uses & limitations
58
 
59
+ [More Information Needed]
60
 
61
+ ## Training Procedure
 
 
 
 
62
 
63
+ [More Information Needed]
64
 
65
  ### Hyperparameters
66
 
67
  <details>
68
  <summary> Click to expand </summary>
69
 
70
+ | Hyperparameter | Value |
71
+ |-------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
72
+ | memory | |
73
+ | steps | [('preprocessor', ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['AGE', 'INCOME', 'NUMKIDS', 'NUMCARDS', 'STORECAR', 'LOANS'], dtype='object'))])), ('classifier', LogisticRegression())] |
74
+ | verbose | False |
75
+ | preprocessor | ColumnTransformer(remainder='passthrough',<br /> transformers=[('cat',<br /> Pipeline(steps=[('onehot',<br /> OneHotEncoder(handle_unknown='ignore'))]),<br /> ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE']),<br /> ('num',<br /> Pipeline(steps=[('scale', StandardScaler())]),<br /> Index(['AGE', 'INCOME', 'NUMKIDS', 'NUMCARDS', 'STORECAR', 'LOANS'], dtype='object'))]) |
76
+ | classifier | LogisticRegression() |
77
+ | preprocessor__n_jobs | |
78
+ | preprocessor__remainder | passthrough |
79
+ | preprocessor__sparse_threshold | 0.3 |
80
+ | preprocessor__transformer_weights | |
81
+ | preprocessor__transformers | [('cat', Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]), ['GENDER', 'MARITAL', 'HOWPAID', 'MORTGAGE']), ('num', Pipeline(steps=[('scale', StandardScaler())]), Index(['AGE', 'INCOME', 'NUMKIDS', 'NUMCARDS', 'STORECAR', 'LOANS'], dtype='object'))] |
82
+ | preprocessor__verbose | False |
83
+ | preprocessor__verbose_feature_names_out | True |
84
+ | preprocessor__cat | Pipeline(steps=[('onehot', OneHotEncoder(handle_unknown='ignore'))]) |
85
+ | preprocessor__num | Pipeline(steps=[('scale', StandardScaler())]) |
86
+ | preprocessor__cat__memory | |
87
+ | preprocessor__cat__steps | [('onehot', OneHotEncoder(handle_unknown='ignore'))] |
88
+ | preprocessor__cat__verbose | False |
89
+ | preprocessor__cat__onehot | OneHotEncoder(handle_unknown='ignore') |
90
+ | preprocessor__cat__onehot__categories | auto |
91
+ | preprocessor__cat__onehot__drop | |
92
+ | preprocessor__cat__onehot__dtype | <class 'numpy.float64'> |
93
+ | preprocessor__cat__onehot__handle_unknown | ignore |
94
+ | preprocessor__cat__onehot__max_categories | |
95
+ | preprocessor__cat__onehot__min_frequency | |
96
+ | preprocessor__cat__onehot__sparse | deprecated |
97
+ | preprocessor__cat__onehot__sparse_output | True |
98
+ | preprocessor__num__memory | |
99
+ | preprocessor__num__steps | [('scale', StandardScaler())] |
100
+ | preprocessor__num__verbose | False |
101
+ | preprocessor__num__scale | StandardScaler() |
102
+ | preprocessor__num__scale__copy | True |
103
+ | preprocessor__num__scale__with_mean | True |
104
+ | preprocessor__num__scale__with_std | True |
105
+ | classifier__C | 1.0 |
106
+ | classifier__class_weight | |
107
+ | classifier__dual | False |
108
+ | classifier__fit_intercept | True |
109
+ | classifier__intercept_scaling | 1 |
110
+ | classifier__l1_ratio | |
111
+ | classifier__max_iter | 100 |
112
+ | classifier__multi_class | auto |
113
+ | classifier__n_jobs | |
114
+ | classifier__penalty | l2 |
115
+ | classifier__random_state | |
116
+ | classifier__solver | lbfgs |
117
+ | classifier__tol | 0.0001 |
118
+ | classifier__verbose | 0 |
119
+ | classifier__warm_start | False |
120
 
121
  </details>
122
 
123
  ### Model Plot
124
 
125
+ <style>#sk-container-id-13 {color: black;background-color: white;}#sk-container-id-13 pre{padding: 0;}#sk-container-id-13 div.sk-toggleable {background-color: white;}#sk-container-id-13 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.3em;box-sizing: border-box;text-align: center;}#sk-container-id-13 label.sk-toggleable__label-arrow:before {content: "▸";float: left;margin-right: 0.25em;color: #696969;}#sk-container-id-13 label.sk-toggleable__label-arrow:hover:before {color: black;}#sk-container-id-13 div.sk-estimator:hover label.sk-toggleable__label-arrow:before {color: black;}#sk-container-id-13 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;background-color: #f0f8ff;}#sk-container-id-13 div.sk-toggleable__content pre {margin: 0.2em;color: black;border-radius: 0.25em;background-color: #f0f8ff;}#sk-container-id-13 input.sk-toggleable__control:checked~div.sk-toggleable__content {max-height: 200px;max-width: 100%;overflow: auto;}#sk-container-id-13 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";}#sk-container-id-13 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;}#sk-container-id-13 div.sk-estimator {font-family: monospace;background-color: #f0f8ff;border: 1px dotted black;border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;}#sk-container-id-13 div.sk-estimator:hover {background-color: #d4ebff;}#sk-container-id-13 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 1px solid gray;flex-grow: 1;}#sk-container-id-13 div.sk-label:hover label.sk-toggleable__label {background-color: #d4ebff;}#sk-container-id-13 div.sk-serial::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: 0;}#sk-container-id-13 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: white;padding-right: 0.2em;padding-left: 0.2em;position: relative;}#sk-container-id-13 div.sk-item {position: relative;z-index: 1;}#sk-container-id-13 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: white;position: relative;}#sk-container-id-13 div.sk-item::before, #sk-container-id-13 div.sk-parallel-item::before {content: "";position: absolute;border-left: 1px solid gray;box-sizing: border-box;top: 0;bottom: 0;left: 50%;z-index: -1;}#sk-container-id-13 div.sk-parallel-item {display: flex;flex-direction: column;z-index: 1;position: relative;background-color: white;}#sk-container-id-13 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;}#sk-container-id-13 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;}#sk-container-id-13 div.sk-parallel-item:only-child::after {width: 0;}#sk-container-id-13 div.sk-dashed-wrapped {border: 1px dashed gray;margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: white;}#sk-container-id-13 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;}#sk-container-id-13 div.sk-label-container {text-align: center;}#sk-container-id-13 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }` but bootstrap.min.css set `[hidden] { display: none !important; }` so we also need the `!important` here to be able to override the default hidden behavior on the sphinx rendered scikit-learn.org. See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;}#sk-container-id-13 div.sk-text-repr-fallback {display: none;}</style><div id="sk-container-id-13" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-97" type="checkbox" ><label for="sk-estimator-id-97" class="sk-toggleable__label sk-toggleable__label-arrow">Pipeline</label><div class="sk-toggleable__content"><pre>Pipeline(steps=[(&#x27;preprocessor&#x27;,ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;,&#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;,StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])),(&#x27;classifier&#x27;, LogisticRegression())])</pre></div></div></div><div class="sk-serial"><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-98" type="checkbox" ><label for="sk-estimator-id-98" class="sk-toggleable__label sk-toggleable__label-arrow">preprocessor: ColumnTransformer</label><div class="sk-toggleable__content"><pre>ColumnTransformer(remainder=&#x27;passthrough&#x27;,transformers=[(&#x27;cat&#x27;,Pipeline(steps=[(&#x27;onehot&#x27;,OneHotEncoder(handle_unknown=&#x27;ignore&#x27;))]),[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]),(&#x27;num&#x27;,Pipeline(steps=[(&#x27;scale&#x27;, StandardScaler())]),Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;))])</pre></div></div></div><div class="sk-parallel"><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-99" type="checkbox" ><label for="sk-estimator-id-99" class="sk-toggleable__label sk-toggleable__label-arrow">cat</label><div class="sk-toggleable__content"><pre>[&#x27;GENDER&#x27;, &#x27;MARITAL&#x27;, &#x27;HOWPAID&#x27;, &#x27;MORTGAGE&#x27;]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-100" type="checkbox" ><label for="sk-estimator-id-100" class="sk-toggleable__label sk-toggleable__label-arrow">OneHotEncoder</label><div class="sk-toggleable__content"><pre>OneHotEncoder(handle_unknown=&#x27;ignore&#x27;)</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-101" type="checkbox" ><label for="sk-estimator-id-101" class="sk-toggleable__label sk-toggleable__label-arrow">num</label><div class="sk-toggleable__content"><pre>Index([&#x27;AGE&#x27;, &#x27;INCOME&#x27;, &#x27;NUMKIDS&#x27;, &#x27;NUMCARDS&#x27;, &#x27;STORECAR&#x27;, &#x27;LOANS&#x27;], dtype=&#x27;object&#x27;)</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-102" type="checkbox" ><label for="sk-estimator-id-102" class="sk-toggleable__label sk-toggleable__label-arrow">StandardScaler</label><div class="sk-toggleable__content"><pre>StandardScaler()</pre></div></div></div></div></div></div></div></div><div class="sk-parallel-item"><div class="sk-item"><div class="sk-label-container"><div class="sk-label sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-103" type="checkbox" ><label for="sk-estimator-id-103" class="sk-toggleable__label sk-toggleable__label-arrow">remainder</label><div class="sk-toggleable__content"><pre>[]</pre></div></div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-104" type="checkbox" ><label for="sk-estimator-id-104" class="sk-toggleable__label sk-toggleable__label-arrow">passthrough</label><div class="sk-toggleable__content"><pre>passthrough</pre></div></div></div></div></div></div></div></div><div class="sk-item"><div class="sk-estimator sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-105" type="checkbox" ><label for="sk-estimator-id-105" class="sk-toggleable__label sk-toggleable__label-arrow">LogisticRegression</label><div class="sk-toggleable__content"><pre>LogisticRegression()</pre></div></div></div></div></div></div></div>
126
 
127
  ## Evaluation Results
 
 
 
128
 
129
  | Metric | Value |
130
  |-----------|----------|
131
+ | accuracy | 0.699187 |
132
+ | precision | 0.699187 |
133
+ | recall | 0.699187 |
134
 
135
  ### Confusion Matrix
136
 
137
  ![Confusion Matrix](confusion_matrix.png)
138
 
139
+ # How to Get Started with the Model
140
+
141
+ [More Information Needed]
142
 
143
  # Model Card Authors
144
 
145
+ This model card is written by following authors:
146
 
147
+ [More Information Needed]
148
 
149
  # Model Card Contact
150
 
151
+ You can contact the model card authors through following channels:
152
+ [More Information Needed]
153
+
154
+ # Citation
155
+
156
+ Below you can find information related to citation.
157
+
158
+ **BibTeX:**
159
+ ```
160
+ [More Information Needed]
161
+ ```
config.json CHANGED
@@ -68,7 +68,7 @@
68
  ]
69
  },
70
  "model": {
71
- "file": "skops-phlbj72w.pkl"
72
  },
73
  "model_format": "pickle",
74
  "task": "tabular-classification"
 
68
  ]
69
  },
70
  "model": {
71
+ "file": "skops-89qohtne.pkl"
72
  },
73
  "model_format": "pickle",
74
  "task": "tabular-classification"
skops-89qohtne.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5c1f32ef69515f27c140417c19b1e1b89c34201d01b709d37767aa6579bd5971
3
+ size 3261