Upload hyperparams.yaml
Browse files- hyperparams.yaml +142 -0
hyperparams.yaml
ADDED
@@ -0,0 +1,142 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Generated 2022-09-22 from:
|
2 |
+
# /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/hparams/train_ecapa.yaml
|
3 |
+
# yamllint disable
|
4 |
+
################################
|
5 |
+
# Model: language identification with ECAPA
|
6 |
+
# Authors: Tanel Alum������������������e, 2021
|
7 |
+
# ################################
|
8 |
+
|
9 |
+
|
10 |
+
|
11 |
+
# Basic parameters
|
12 |
+
seed: 1988
|
13 |
+
__set_seed: !apply:torch.manual_seed [1988]
|
14 |
+
output_folder: results/epaca/1988
|
15 |
+
save_folder: results/epaca/1988/save
|
16 |
+
train_log: results/epaca/1988/train_log.txt
|
17 |
+
data_folder: ./
|
18 |
+
rir_folder: ./
|
19 |
+
|
20 |
+
shards_url: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards
|
21 |
+
train_meta: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/train/meta.json
|
22 |
+
val_meta: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/dev/meta.json
|
23 |
+
train_shards: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/train/shard-{000000..000009}.tar
|
24 |
+
val_shards: /opt/speechbrain_LID/recipes/VoxLingua107/lang_id/data_shards/dev/shard-000000.tar
|
25 |
+
|
26 |
+
# Set to directory on a large disk if you are training on Webdataset shards hosted on the web
|
27 |
+
#shard_cache_dir:
|
28 |
+
|
29 |
+
ckpt_interval_minutes: 5
|
30 |
+
|
31 |
+
# Training parameters
|
32 |
+
number_of_epochs: 1
|
33 |
+
lr: 0.001
|
34 |
+
lr_final: 0.0001
|
35 |
+
sample_rate: 16000
|
36 |
+
sentence_len: 3 # seconds
|
37 |
+
|
38 |
+
# Feature parameters
|
39 |
+
n_mels: 60
|
40 |
+
left_frames: 0
|
41 |
+
right_frames: 0
|
42 |
+
deltas: false
|
43 |
+
|
44 |
+
# Number of languages
|
45 |
+
out_n_neurons: 2
|
46 |
+
|
47 |
+
train_dataloader_options:
|
48 |
+
num_workers: 2
|
49 |
+
batch_size: 128
|
50 |
+
|
51 |
+
val_dataloader_options:
|
52 |
+
num_workers: 0
|
53 |
+
batch_size: 32
|
54 |
+
|
55 |
+
# Functions
|
56 |
+
compute_features: &id003 !new:speechbrain.lobes.features.Fbank
|
57 |
+
n_mels: 60
|
58 |
+
left_frames: 0
|
59 |
+
right_frames: 0
|
60 |
+
deltas: false
|
61 |
+
|
62 |
+
embedding_model: &id004 !new:speechbrain.lobes.models.ECAPA_TDNN.ECAPA_TDNN
|
63 |
+
input_size: 60
|
64 |
+
channels: [1024, 1024, 1024, 1024, 3072]
|
65 |
+
kernel_sizes: [5, 3, 3, 3, 1]
|
66 |
+
dilations: [1, 2, 3, 4, 1]
|
67 |
+
attention_channels: 128
|
68 |
+
lin_neurons: 256
|
69 |
+
|
70 |
+
classifier: &id005 !new:speechbrain.lobes.models.Xvector.Classifier
|
71 |
+
input_shape: [null, null, 256]
|
72 |
+
activation: !name:torch.nn.LeakyReLU
|
73 |
+
lin_blocks: 1
|
74 |
+
lin_neurons: 512
|
75 |
+
out_neurons: 2
|
76 |
+
|
77 |
+
epoch_counter: &id007 !new:speechbrain.utils.epoch_loop.EpochCounter
|
78 |
+
limit: 1
|
79 |
+
|
80 |
+
|
81 |
+
augment_speed: &id001 !new:speechbrain.lobes.augment.TimeDomainSpecAugment
|
82 |
+
sample_rate: 16000
|
83 |
+
speeds: [90, 100, 110]
|
84 |
+
|
85 |
+
|
86 |
+
add_rev_noise: &id002 !new:speechbrain.lobes.augment.EnvCorrupt
|
87 |
+
openrir_folder: ./
|
88 |
+
openrir_max_noise_len: 3.0 # seconds
|
89 |
+
reverb_prob: 0.5
|
90 |
+
noise_prob: 0.8
|
91 |
+
noise_snr_low: 0
|
92 |
+
noise_snr_high: 15
|
93 |
+
rir_scale_factor: 1.0
|
94 |
+
|
95 |
+
# Definition of the augmentation pipeline.
|
96 |
+
# If concat_augment = False, the augmentation techniques are applied
|
97 |
+
# in sequence. If concat_augment = True, all the augmented signals
|
98 |
+
# # are concatenated in a single big batch.
|
99 |
+
augment_pipeline: [*id001, *id002]
|
100 |
+
|
101 |
+
concat_augment: false
|
102 |
+
|
103 |
+
mean_var_norm: &id006 !new:speechbrain.processing.features.InputNormalization
|
104 |
+
|
105 |
+
norm_type: sentence
|
106 |
+
std_norm: false
|
107 |
+
|
108 |
+
modules:
|
109 |
+
compute_features: *id003
|
110 |
+
augment_speed: *id001
|
111 |
+
add_rev_noise: *id002
|
112 |
+
embedding_model: *id004
|
113 |
+
classifier: *id005
|
114 |
+
mean_var_norm: *id006
|
115 |
+
compute_cost: !name:speechbrain.nnet.losses.nll_loss
|
116 |
+
# compute_error: !name:speechbrain.nnet.losses.classification_error
|
117 |
+
|
118 |
+
opt_class: !name:torch.optim.Adam
|
119 |
+
lr: 0.001
|
120 |
+
weight_decay: 0.000002
|
121 |
+
|
122 |
+
lr_annealing: !new:speechbrain.nnet.schedulers.LinearScheduler
|
123 |
+
initial_value: 0.001
|
124 |
+
final_value: 0.0001
|
125 |
+
epoch_count: 1
|
126 |
+
|
127 |
+
# Logging + checkpoints
|
128 |
+
train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger
|
129 |
+
save_file: results/epaca/1988/train_log.txt
|
130 |
+
|
131 |
+
|
132 |
+
error_stats: !name:speechbrain.utils.metric_stats.MetricStats
|
133 |
+
metric: !name:speechbrain.nnet.losses.classification_error
|
134 |
+
reduction: batch
|
135 |
+
|
136 |
+
checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer
|
137 |
+
checkpoints_dir: results/epaca/1988/save
|
138 |
+
recoverables:
|
139 |
+
embedding_model: *id004
|
140 |
+
classifier: *id005
|
141 |
+
normalizer: *id006
|
142 |
+
counter: *id007
|