Upload PPO LunarLander-v2 trained agent
Browse files- README.md +37 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +99 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +9 -0
- replay.mp4 +0 -0
- results.json +1 -0
README.md
ADDED
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: LunarLander-v2
|
16 |
+
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 272.41 +/- 18.48
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ce8f7a9d510>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce8f7a9d5a0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce8f7a9d630>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce8f7a9d6c0>", "_build": "<function ActorCriticPolicy._build at 0x7ce8f7a9d750>", "forward": "<function ActorCriticPolicy.forward at 0x7ce8f7a9d7e0>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce8f7a9d870>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce8f7a9d900>", "_predict": "<function ActorCriticPolicy._predict at 0x7ce8f7a9d990>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce8f7a9da20>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce8f7a9dab0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce8f7a9db40>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ce8f7a59e40>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1710169969473207349, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3NET22ynK8Q8cSvRFR371wbpS9uIr2vgAAgD8AAIA/M5N3vI9+Jbq5Zr+6OpGdtZAvQ7vm4uM5AACAPwAAgD9m0V09j4YXugTKrzsiTcA3LOQmOorm9DUAAAAAAAAAACaWoT32nEW6noyBuqvZQzbdaUQ7qqyZOQAAgD8AAIA/Zk+CPHsSoLqyfxKzMpZ6MFC+hzoTEcQzAACAPwAAgD8A2eK8NiZnvPWs6D107zc8iFLbvUIJGT0AAIA/AACAP8ZCTz4/okc/VSkuvu+sir4584Y8YhuqvQAAAAAAAAAAAOADutGNsD0xMiE9A8mXvnlK4bzb52+9AAAAAAAAAABmLXU9w8KqP7DFkD7NTMi+GnYePocCHD4AAAAAAAAAAAD0iTv2LGe604dPsyXv06/5s5K6RgTHMwAAgD8AAIA/GsHSPTlKGz6yjS6+0LI9vtrqvjtABZC8AAAAAAAAAADm0JE9os4MP0h5+b03HY2+rsa3vN5eUj0AAAAAAAAAANoeEL59Sqw/raT6vnsI7b6tLG++k0U8vgAAAAAAAAAAzecovWsYpT2+ADI+bJ8kvngmCz2F4eG8AAAAAAAAAAAgBgI+ZlSdP7j0aD7K4LS+MW2IPlJW8j0AAAAAAAAAAMCWR75RbvY+cogFPdm6pr7388S986KivAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG91Dlgc94iMAWyUS/mMAXSUR0CT4oornTy8dX2UKGgGR0BrkFGoaUA1aAdNAQFoCEdAk+LwdS2phnV9lChoBkdAceJYVZcLSmgHTTIBaAhHQJPjnPJJXhh1fZQoaAZHQHAeJHiFTNtoB00cAWgIR0CT46hw2l2vdX2UKGgGR0By2cC9ytFKaAdNCwFoCEdAk+RlByCFsnV9lChoBkdAcTEoH9m6G2gHS/5oCEdAk+ZzJEH+qHV9lChoBkdAcsblme18cGgHTSsBaAhHQJPnk6ij+Jh1fZQoaAZHQHHUvxQSBbxoB00jAWgIR0CT6HI5HVgAdX2UKGgGR0Bs4RLqUu+RaAdNGwFoCEdAk+rDWGyooHV9lChoBkdAcGar56+nImgHTSABaAhHQJPsPJQtSQ51fZQoaAZHQHFNvykKu0VoB00VAWgIR0CT7FFxn3+NdX2UKGgGR0BxoDABT4tZaAdNBAFoCEdAk+yB0yP+43V9lChoBkdAbQCc6NlyzWgHTbIBaAhHQJPsv/yXlbN1fZQoaAZHQG1TfsE7nxJoB00jAWgIR0CT7ZmI0qH5dX2UKGgGR0By/GB4D9wWaAdNUQFoCEdAk+2f420iQnV9lChoBkdAa62Kmbb1y2gHTSoBaAhHQJPuq6Ae7tl1fZQoaAZHQG6GfL1VYIVoB00eAWgIR0CT8H0qYqoZdX2UKGgGR0Bx5Qx46fapaAdN4gFoCEdAk/D1FtsN2HV9lChoBkdAcW3CL/CIlGgHTREBaAhHQJPxNMh5gPV1fZQoaAZHQG38nsTnJT5oB00bAWgIR0CT8mfdAPd3dX2UKGgGR0BtC45WBBiTaAdNCgFoCEdAk/P9V/+bVnV9lChoBkdAby9vDP4VRGgHTQUBaAhHQJP1Ic6vJRx1fZQoaAZHQHBsrd8Aq/doB00AAWgIR0CT9XkBjnV5dX2UKGgGR0BxaxubZvkzaAdNEQFoCEdAk/WswtapxXV9lChoBkdAYZmNutOmBWgHTegDaAhHQJP2jdYW+Gp1fZQoaAZHQHE/FGLDQ7doB000AWgIR0CT9yWOp84QdX2UKGgGR0By9jHim2sraAdNGgFoCEdAk/dYs3AEdXV9lChoBkdAPP+xrzoUz2gHS9JoCEdAk/iB4dIXj3V9lChoBkdAcMXWxhUip2gHTUgBaAhHQJP4xJZntfJ1fZQoaAZHQHD/eu7pV0doB00QAWgIR0CT+c3gDRtxdX2UKGgGR0BiYaHfuTibaAdN6ANoCEdAk/niJfpljHV9lChoBkdAYba2AoXsPmgHTegDaAhHQJP8tp5/smh1fZQoaAZHQHAqS8J2MbZoB00OAWgIR0CT/SzreIl/dX2UKGgGR0ByLcna37UHaAdNbwFoCEdAk/18My8BdXV9lChoBkdAcM3nmJWNm2gHS+9oCEdAk/18cp9ZzXV9lChoBkdAcMjaRp1zQ2gHTWIBaAhHQJP+f6sQumJ1fZQoaAZHQGwtA9vCMxZoB00LAWgIR0CT/pyEcsDodX2UKGgGR0BuCLNKRMewaAdNIwFoCEdAk/7rkCFK03V9lChoBkdAb2KfV7Qb/GgHS/poCEdAk/+AJkXk53V9lChoBkdAXVZh/iHZb2gHTegDaAhHQJQAOrfcesB1fZQoaAZHQHFdVOGj9GZoB007AWgIR0CUAMbA1vVFdX2UKGgGR0ByyPbXYlIFaAdNDQFoCEdAlAGx7JGOMnV9lChoBkdAcUypFCswL2gHTR8BaAhHQJQCFx+8Xep1fZQoaAZHQG9XxHf/FR5oB01bAWgIR0CUArOgQHzIdX2UKGgGR0ByC1E1EVnFaAdNKQFoCEdAlAQspCrtFHV9lChoBkdAbqb5ckdFOWgHTTkBaAhHQJQEt5Z8rqd1fZQoaAZHQHIjGetjkMloB00RAWgIR0CUGWBE8aGYdX2UKGgGR0ByK1eNT987aAdL9WgIR0CUGfPAfuCxdX2UKGgGR0BxWW78Nx2jaAdNFwFoCEdAlBrGE4//vXV9lChoBkdAcOl3zcynDWgHS/1oCEdAlBsD2exwAHV9lChoBkdAcau0waisXGgHTWMBaAhHQJQbsnCwbER1fZQoaAZHQHIdQ6ySmqJoB01bAWgIR0CUHC7zCk44dX2UKGgGR0BvWkCPp6hQaAdNZgFoCEdAlBw/+n62v3V9lChoBkdAcyNDfm9xqGgHS/FoCEdAlB0Uh/y5JHV9lChoBkdAcjW8q4H5amgHTWABaAhHQJQdSPS2H+J1fZQoaAZHQHKuIgeRxLloB00uAWgIR0CUHV3xFy7xdX2UKGgGR0Byi/im2sq8aAdNGgFoCEdAlB34Ox0MgHV9lChoBkdAb2pqdpZfUmgHTS8BaAhHQJQfYtK7I1d1fZQoaAZHQGzc6OHWSU1oB01iAWgIR0CUH3lvZRKpdX2UKGgGR0BygzYPGyX2aAdNEgFoCEdAlCAGtuDSPXV9lChoBkdAclN6XBxgiWgHTS8BaAhHQJQge0w8GLV1fZQoaAZHQHLWhyGSIP9oB00BAWgIR0CUIY7ALy+YdX2UKGgGR0BUBylFc6eYaAdN6ANoCEdAlCKzY7JXAHV9lChoBkdAb/V06HTJAGgHTQQBaAhHQJQi3sniNsF1fZQoaAZHQG0aedK/VRVoB004AWgIR0CUI+8p1A7gdX2UKGgGR0BvzNA1NxlyaAdNFQFoCEdAlCS8Md92HXV9lChoBkdAbynGR3eN1mgHTRcBaAhHQJQk30163RZ1fZQoaAZHQHFB/Jmukk9oB003AWgIR0CUJWdX1anrdX2UKGgGR0By7Ana37UHaAdNCwFoCEdAlCXENvwVkHV9lChoBkdAb3tU3GXHBGgHTVkBaAhHQJQl7jT8YQ91fZQoaAZHQG5GJZGKAJ9oB00VAWgIR0CUJfzposZpdX2UKGgGR0Bwvf1Fpfx+aAdL6WgIR0CUJrHY6GQCdX2UKGgGR0BwGWLKmsNlaAdNSwFoCEdAlCdMF+uvEHV9lChoBkdAcwRe0ojOcGgHTQEBaAhHQJQnc5GSZBt1fZQoaAZHQHLOZMg2ZRdoB0voaAhHQJQns9jgAIZ1fZQoaAZHQHDgFuejEehoB01BAWgIR0CUJ9mPYFq0dX2UKGgGR0ByyanFYMfBaAdNKgFoCEdAlCjykKu0TnV9lChoBkdAcI9UiILw4WgHS/1oCEdAlCkjRUm2LHV9lChoBkdARv46ySmqHWgHS7xoCEdAlCnhTS9dvHV9lChoBkdAcTvKGL1mJ2gHS/loCEdAlCnoKYzBRHV9lChoBkdAcvXvZRKpUGgHTTYBaAhHQJQr5YhdMTN1fZQoaAZHQHAdM7yQPqdoB00YAWgIR0CULOGL1mJ4dX2UKGgGR0Bwgd8Z1mrbaAdNAQFoCEdAlC0FtfoicHV9lChoBkdAcdmlD4QBgmgHTWIBaAhHQJQufqSowVV1fZQoaAZHQHFDDK1XvH9oB0vwaAhHQJQuikCV8kV1fZQoaAZHQG/b6g2606ZoB009AWgIR0CULr7btZ3cdX2UKGgGR0By70L/jsD5aAdL6WgIR0CULtQRf4RFdX2UKGgGR0BvzDLjghr4aAdNFAFoCEdAlC7dKyv9tXV9lChoBkdAcApoUzsQd2gHTT8BaAhHQJQvU9TxXn11fZQoaAZHQHCXKt9x6v9oB00jAWgIR0CUL+tGd7OWdX2UKGgGR0Bx6HgQ6IWQaAdNGQFoCEdAlDATCHh0hnV9lChoBkdAccWIFNcnmmgHTQ8BaAhHQJQxQyVObiJ1fZQoaAZHQHMF5mNBF/hoB00RAWgIR0CUMaM+u/1ydX2UKGgGR0Bw24t7KJVKaAdL/2gIR0CUMhLThHbzdX2UKGgGR0Bu/S64Ds+naAdNGQFoCEdAlDMSbtqpLnV9lChoBkdAbn4G7Bfrr2gHTQQBaAhHQJQ01pxm03R1fZQoaAZHQHAikXxe9jBoB0vtaAhHQJQ1QHmig011fZQoaAZHQHA9/BnBciZoB0vzaAhHQJQ4Csny/bl1fZQoaAZHQHFha8L8aXNoB0v8aAhHQJQ4mbd8ArB1fZQoaAZHQHI/phWo3rFoB008AWgIR0CUOPVvddmhdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.1.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:7df2805dec38a46273a12cf9bbdc0f61a49eb807eaced2bee18bab27ca38c2b4
|
3 |
+
size 148060
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.0.0a5
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7ce8f7a9d510>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ce8f7a9d5a0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ce8f7a9d630>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ce8f7a9d6c0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7ce8f7a9d750>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7ce8f7a9d7e0>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7ce8f7a9d870>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ce8f7a9d900>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7ce8f7a9d990>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ce8f7a9da20>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ce8f7a9dab0>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7ce8f7a9db40>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc._abc_data object at 0x7ce8f7a59e40>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"num_timesteps": 1015808,
|
25 |
+
"_total_timesteps": 1000000,
|
26 |
+
"_num_timesteps_at_start": 0,
|
27 |
+
"seed": null,
|
28 |
+
"action_noise": null,
|
29 |
+
"start_time": 1710169969473207349,
|
30 |
+
"learning_rate": 0.0003,
|
31 |
+
"tensorboard_log": null,
|
32 |
+
"_last_obs": {
|
33 |
+
":type:": "<class 'numpy.ndarray'>",
|
34 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAE3NET22ynK8Q8cSvRFR371wbpS9uIr2vgAAgD8AAIA/M5N3vI9+Jbq5Zr+6OpGdtZAvQ7vm4uM5AACAPwAAgD9m0V09j4YXugTKrzsiTcA3LOQmOorm9DUAAAAAAAAAACaWoT32nEW6noyBuqvZQzbdaUQ7qqyZOQAAgD8AAIA/Zk+CPHsSoLqyfxKzMpZ6MFC+hzoTEcQzAACAPwAAgD8A2eK8NiZnvPWs6D107zc8iFLbvUIJGT0AAIA/AACAP8ZCTz4/okc/VSkuvu+sir4584Y8YhuqvQAAAAAAAAAAAOADutGNsD0xMiE9A8mXvnlK4bzb52+9AAAAAAAAAABmLXU9w8KqP7DFkD7NTMi+GnYePocCHD4AAAAAAAAAAAD0iTv2LGe604dPsyXv06/5s5K6RgTHMwAAgD8AAIA/GsHSPTlKGz6yjS6+0LI9vtrqvjtABZC8AAAAAAAAAADm0JE9os4MP0h5+b03HY2+rsa3vN5eUj0AAAAAAAAAANoeEL59Sqw/raT6vnsI7b6tLG++k0U8vgAAAAAAAAAAzecovWsYpT2+ADI+bJ8kvngmCz2F4eG8AAAAAAAAAAAgBgI+ZlSdP7j0aD7K4LS+MW2IPlJW8j0AAAAAAAAAAMCWR75RbvY+cogFPdm6pr7388S986KivAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
35 |
+
},
|
36 |
+
"_last_episode_starts": {
|
37 |
+
":type:": "<class 'numpy.ndarray'>",
|
38 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
39 |
+
},
|
40 |
+
"_last_original_obs": null,
|
41 |
+
"_episode_num": 0,
|
42 |
+
"use_sde": false,
|
43 |
+
"sde_sample_freq": -1,
|
44 |
+
"_current_progress_remaining": -0.015808000000000044,
|
45 |
+
"_stats_window_size": 100,
|
46 |
+
"ep_info_buffer": {
|
47 |
+
":type:": "<class 'collections.deque'>",
|
48 |
+
":serialized:": "gAWVMQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG91Dlgc94iMAWyUS/mMAXSUR0CT4oornTy8dX2UKGgGR0BrkFGoaUA1aAdNAQFoCEdAk+LwdS2phnV9lChoBkdAceJYVZcLSmgHTTIBaAhHQJPjnPJJXhh1fZQoaAZHQHAeJHiFTNtoB00cAWgIR0CT46hw2l2vdX2UKGgGR0By2cC9ytFKaAdNCwFoCEdAk+RlByCFsnV9lChoBkdAcTEoH9m6G2gHS/5oCEdAk+ZzJEH+qHV9lChoBkdAcsblme18cGgHTSsBaAhHQJPnk6ij+Jh1fZQoaAZHQHHUvxQSBbxoB00jAWgIR0CT6HI5HVgAdX2UKGgGR0Bs4RLqUu+RaAdNGwFoCEdAk+rDWGyooHV9lChoBkdAcGar56+nImgHTSABaAhHQJPsPJQtSQ51fZQoaAZHQHFNvykKu0VoB00VAWgIR0CT7FFxn3+NdX2UKGgGR0BxoDABT4tZaAdNBAFoCEdAk+yB0yP+43V9lChoBkdAbQCc6NlyzWgHTbIBaAhHQJPsv/yXlbN1fZQoaAZHQG1TfsE7nxJoB00jAWgIR0CT7ZmI0qH5dX2UKGgGR0By/GB4D9wWaAdNUQFoCEdAk+2f420iQnV9lChoBkdAa62Kmbb1y2gHTSoBaAhHQJPuq6Ae7tl1fZQoaAZHQG6GfL1VYIVoB00eAWgIR0CT8H0qYqoZdX2UKGgGR0Bx5Qx46fapaAdN4gFoCEdAk/D1FtsN2HV9lChoBkdAcW3CL/CIlGgHTREBaAhHQJPxNMh5gPV1fZQoaAZHQG38nsTnJT5oB00bAWgIR0CT8mfdAPd3dX2UKGgGR0BtC45WBBiTaAdNCgFoCEdAk/P9V/+bVnV9lChoBkdAby9vDP4VRGgHTQUBaAhHQJP1Ic6vJRx1fZQoaAZHQHBsrd8Aq/doB00AAWgIR0CT9XkBjnV5dX2UKGgGR0BxaxubZvkzaAdNEQFoCEdAk/WswtapxXV9lChoBkdAYZmNutOmBWgHTegDaAhHQJP2jdYW+Gp1fZQoaAZHQHE/FGLDQ7doB000AWgIR0CT9yWOp84QdX2UKGgGR0By9jHim2sraAdNGgFoCEdAk/dYs3AEdXV9lChoBkdAPP+xrzoUz2gHS9JoCEdAk/iB4dIXj3V9lChoBkdAcMXWxhUip2gHTUgBaAhHQJP4xJZntfJ1fZQoaAZHQHD/eu7pV0doB00QAWgIR0CT+c3gDRtxdX2UKGgGR0BiYaHfuTibaAdN6ANoCEdAk/niJfpljHV9lChoBkdAYba2AoXsPmgHTegDaAhHQJP8tp5/smh1fZQoaAZHQHAqS8J2MbZoB00OAWgIR0CT/SzreIl/dX2UKGgGR0ByLcna37UHaAdNbwFoCEdAk/18My8BdXV9lChoBkdAcM3nmJWNm2gHS+9oCEdAk/18cp9ZzXV9lChoBkdAcMjaRp1zQ2gHTWIBaAhHQJP+f6sQumJ1fZQoaAZHQGwtA9vCMxZoB00LAWgIR0CT/pyEcsDodX2UKGgGR0BuCLNKRMewaAdNIwFoCEdAk/7rkCFK03V9lChoBkdAb2KfV7Qb/GgHS/poCEdAk/+AJkXk53V9lChoBkdAXVZh/iHZb2gHTegDaAhHQJQAOrfcesB1fZQoaAZHQHFdVOGj9GZoB007AWgIR0CUAMbA1vVFdX2UKGgGR0ByyPbXYlIFaAdNDQFoCEdAlAGx7JGOMnV9lChoBkdAcUypFCswL2gHTR8BaAhHQJQCFx+8Xep1fZQoaAZHQG9XxHf/FR5oB01bAWgIR0CUArOgQHzIdX2UKGgGR0ByC1E1EVnFaAdNKQFoCEdAlAQspCrtFHV9lChoBkdAbqb5ckdFOWgHTTkBaAhHQJQEt5Z8rqd1fZQoaAZHQHIjGetjkMloB00RAWgIR0CUGWBE8aGYdX2UKGgGR0ByK1eNT987aAdL9WgIR0CUGfPAfuCxdX2UKGgGR0BxWW78Nx2jaAdNFwFoCEdAlBrGE4//vXV9lChoBkdAcOl3zcynDWgHS/1oCEdAlBsD2exwAHV9lChoBkdAcau0waisXGgHTWMBaAhHQJQbsnCwbER1fZQoaAZHQHIdQ6ySmqJoB01bAWgIR0CUHC7zCk44dX2UKGgGR0BvWkCPp6hQaAdNZgFoCEdAlBw/+n62v3V9lChoBkdAcyNDfm9xqGgHS/FoCEdAlB0Uh/y5JHV9lChoBkdAcjW8q4H5amgHTWABaAhHQJQdSPS2H+J1fZQoaAZHQHKuIgeRxLloB00uAWgIR0CUHV3xFy7xdX2UKGgGR0Byi/im2sq8aAdNGgFoCEdAlB34Ox0MgHV9lChoBkdAb2pqdpZfUmgHTS8BaAhHQJQfYtK7I1d1fZQoaAZHQGzc6OHWSU1oB01iAWgIR0CUH3lvZRKpdX2UKGgGR0BygzYPGyX2aAdNEgFoCEdAlCAGtuDSPXV9lChoBkdAclN6XBxgiWgHTS8BaAhHQJQge0w8GLV1fZQoaAZHQHLWhyGSIP9oB00BAWgIR0CUIY7ALy+YdX2UKGgGR0BUBylFc6eYaAdN6ANoCEdAlCKzY7JXAHV9lChoBkdAb/V06HTJAGgHTQQBaAhHQJQi3sniNsF1fZQoaAZHQG0aedK/VRVoB004AWgIR0CUI+8p1A7gdX2UKGgGR0BvzNA1NxlyaAdNFQFoCEdAlCS8Md92HXV9lChoBkdAbynGR3eN1mgHTRcBaAhHQJQk30163RZ1fZQoaAZHQHFB/Jmukk9oB003AWgIR0CUJWdX1anrdX2UKGgGR0By7Ana37UHaAdNCwFoCEdAlCXENvwVkHV9lChoBkdAb3tU3GXHBGgHTVkBaAhHQJQl7jT8YQ91fZQoaAZHQG5GJZGKAJ9oB00VAWgIR0CUJfzposZpdX2UKGgGR0Bwvf1Fpfx+aAdL6WgIR0CUJrHY6GQCdX2UKGgGR0BwGWLKmsNlaAdNSwFoCEdAlCdMF+uvEHV9lChoBkdAcwRe0ojOcGgHTQEBaAhHQJQnc5GSZBt1fZQoaAZHQHLOZMg2ZRdoB0voaAhHQJQns9jgAIZ1fZQoaAZHQHDgFuejEehoB01BAWgIR0CUJ9mPYFq0dX2UKGgGR0ByyanFYMfBaAdNKgFoCEdAlCjykKu0TnV9lChoBkdAcI9UiILw4WgHS/1oCEdAlCkjRUm2LHV9lChoBkdARv46ySmqHWgHS7xoCEdAlCnhTS9dvHV9lChoBkdAcTvKGL1mJ2gHS/loCEdAlCnoKYzBRHV9lChoBkdAcvXvZRKpUGgHTTYBaAhHQJQr5YhdMTN1fZQoaAZHQHAdM7yQPqdoB00YAWgIR0CULOGL1mJ4dX2UKGgGR0Bwgd8Z1mrbaAdNAQFoCEdAlC0FtfoicHV9lChoBkdAcdmlD4QBgmgHTWIBaAhHQJQufqSowVV1fZQoaAZHQHFDDK1XvH9oB0vwaAhHQJQuikCV8kV1fZQoaAZHQG/b6g2606ZoB009AWgIR0CULr7btZ3cdX2UKGgGR0By70L/jsD5aAdL6WgIR0CULtQRf4RFdX2UKGgGR0BvzDLjghr4aAdNFAFoCEdAlC7dKyv9tXV9lChoBkdAcApoUzsQd2gHTT8BaAhHQJQvU9TxXn11fZQoaAZHQHCXKt9x6v9oB00jAWgIR0CUL+tGd7OWdX2UKGgGR0Bx6HgQ6IWQaAdNGQFoCEdAlDATCHh0hnV9lChoBkdAccWIFNcnmmgHTQ8BaAhHQJQxQyVObiJ1fZQoaAZHQHMF5mNBF/hoB00RAWgIR0CUMaM+u/1ydX2UKGgGR0Bw24t7KJVKaAdL/2gIR0CUMhLThHbzdX2UKGgGR0Bu/S64Ds+naAdNGQFoCEdAlDMSbtqpLnV9lChoBkdAbn4G7Bfrr2gHTQQBaAhHQJQ01pxm03R1fZQoaAZHQHAikXxe9jBoB0vtaAhHQJQ1QHmig011fZQoaAZHQHA9/BnBciZoB0vzaAhHQJQ4Csny/bl1fZQoaAZHQHFha8L8aXNoB0v8aAhHQJQ4mbd8ArB1fZQoaAZHQHI/phWo3rFoB008AWgIR0CUOPVvddmhdWUu"
|
49 |
+
},
|
50 |
+
"ep_success_buffer": {
|
51 |
+
":type:": "<class 'collections.deque'>",
|
52 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
53 |
+
},
|
54 |
+
"_n_updates": 248,
|
55 |
+
"observation_space": {
|
56 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
57 |
+
":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=",
|
58 |
+
"dtype": "float32",
|
59 |
+
"bounded_below": "[ True True True True True True True True]",
|
60 |
+
"bounded_above": "[ True True True True True True True True]",
|
61 |
+
"_shape": [
|
62 |
+
8
|
63 |
+
],
|
64 |
+
"low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
65 |
+
"high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
66 |
+
"low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]",
|
67 |
+
"high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]",
|
68 |
+
"_np_random": null
|
69 |
+
},
|
70 |
+
"action_space": {
|
71 |
+
":type:": "<class 'gymnasium.spaces.discrete.Discrete'>",
|
72 |
+
":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=",
|
73 |
+
"n": "4",
|
74 |
+
"start": "0",
|
75 |
+
"_shape": [],
|
76 |
+
"dtype": "int64",
|
77 |
+
"_np_random": null
|
78 |
+
},
|
79 |
+
"n_envs": 16,
|
80 |
+
"n_steps": 1024,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 64,
|
87 |
+
"n_epochs": 4,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null,
|
95 |
+
"lr_schedule": {
|
96 |
+
":type:": "<class 'function'>",
|
97 |
+
":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
98 |
+
}
|
99 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:afd7e97f90b56e40d140234926c3ac402bac95c2254fc262c3ef7330f6cb27db
|
3 |
+
size 88362
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:58f2e127e80a7e4b39164cc8154474e160e5d9f397b1aa7c3b908eccdbf6b904
|
3 |
+
size 43762
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c35cea3b2e60fb5e7e162d3592df775cd400e575a31c72f359fb9e654ab00c5
|
3 |
+
size 864
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023
|
2 |
+
- Python: 3.10.12
|
3 |
+
- Stable-Baselines3: 2.0.0a5
|
4 |
+
- PyTorch: 2.1.0+cu121
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.25.2
|
7 |
+
- Cloudpickle: 2.2.1
|
8 |
+
- Gymnasium: 0.28.1
|
9 |
+
- OpenAI Gym: 0.25.2
|
replay.mp4
ADDED
Binary file (143 kB). View file
|
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 272.410153, "std_reward": 18.47619007740049, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-03-11T15:35:14.700725"}
|