a2c-PandaReachDense-v3 / config.json
sagarsdesai's picture
Initial commit
43dfceb
raw
history blame
14.6 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7c7a380d5990>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7c7a380e23c0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 10000, "_total_timesteps": 10000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1693291446553149602, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAQX/lPjm66L2OBwc/H81gP0yq5r+LjJE/lQMXPxrTsT/VEE6/s2uvvoXnG8BsDM8/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAU87YPyz8fr8b6U4/b7Bov1z6Tb8gMJG+dhFOP5iX0T++kZE+aDGUv6Bwj7866K8+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABBf+U+ObrovY4HBz97ovw9wvZAvwhTIL8fzWA/TKrmv4uMkT/5Gqa+RIBcvwgTID+VAxc/GtOxP9UQTr8CubI/ograv0j9fD+za6++hecbwGwMzz/U0eY+InY5Ph4neL6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4482365 -0.11363644 0.527459 ]\n [ 0.8781299 -1.802072 1.1371015 ]\n [ 0.5898984 1.3892548 -0.80494434]\n [-0.34261855 -2.4360058 1.6175666 ]]", "desired_goal": "[[ 1.6937965 -0.99603534 0.8082444 ]\n [-0.90894216 -0.80460143 -0.2835703 ]\n [ 0.80495393 1.6374388 0.28431505]\n [-1.1577578 -1.1206245 0.34356862]]", "observation": "[[ 0.4482365 -0.11363644 0.527459 0.12335678 -0.7537652 -0.62626696]\n [ 0.8781299 -1.802072 1.1371015 -0.32442454 -0.8613322 0.6252904 ]\n [ 0.5898984 1.3892548 -0.80494434 1.396271 -1.7034495 0.98823977]\n [-0.34261855 -2.4360058 1.6175666 0.4508196 0.1811147 -0.24233672]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAK3eSvTWdd71RIXo+wJP+vSG0ob3KJnY+WhsIPnG1Xjt385U+0GS7PeYyvT3aTh4+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.07151636 -0.06045266 0.24426772]\n [-0.12430525 -0.07895685 0.24038234]\n [ 0.13291684 0.00339827 0.2928731 ]\n [ 0.09150088 0.09238224 0.15459767]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwCaBo/RmbsqMAWyUSzKMAXSUR0Aw5peeFtbcdX2UKGgGR8ArYCjk+5e7aAdLMmgIR0Aww5IpYs/ZdX2UKGgGR8ARN30PH1e0aAdLG2gIR0Aw7/rjYI0JdX2UKGgGR8Aq/yLAHmihaAdLMmgIR0Axhs9jgAIZdX2UKGgGR8AiSnLq2SdOaAdLMmgIR0AxeKqGUOd5dX2UKGgGR8AYG+WWyC4CaAdLJ2gIR0AxX0163RXwdX2UKGgGR8Auz6AvtdAxaAdLMmgIR0AxUxGUfPondX2UKGgGR8Ah2lFc6eXiaAdLMmgIR0AyFhCdBjWkdX2UKGgGR8AvtsANoakzaAdLMmgIR0AyCEsasIVudX2UKGgGR8AiiBQvYe1baAdLMmgIR0Ax7prULDyfdX2UKGgGR8AmlCk43m3faAdLMmgIR0Ax4QZXMhX9dX2UKGgGR8Ael65Xlr/LaAdLMmgIR0AypMkyDZlGdX2UKGgGR8AkFx1gYxcnaAdLMmgIR0AymHNHH3lCdX2UKGgGR8Al0zP8hs68aAdLMmgIR0Ayf7zCk43ndX2UKGgGR8AqIdOIqLCOaAdLMmgIR0Aycyhi9ZiedX2UKGgGR8AQDzvqkdmyaAdLHmgIR0Ay/FOO801qdX2UKGgGR8AsRev6j323aAdLMmgIR0AzMmJFb3XadX2UKGgGR8AXssBhhH9WaAdLJmgIR0Ay6uWrwOOKdX2UKGgGR8AjbUtI065oaAdLMmgIR0AzGbONYKYzdX2UKGgGR8AlgSowVTJhaAdLMmgIR0AzlsIE8q4IdX2UKGgGR8AHjeIl+mWMaAdLHWgIR0AziGJN0vGqdX2UKGgGR8AjLUI9kjHGaAdLMmgIR0Aze9oexOcldX2UKGgGR8Axh+l0o0AMaAdLMmgIR0AzqvYODrZ8dX2UKGgGR8AOsUIsyzomaAdLIWgIR0Az5DEm6XjVdX2UKGgGR8A498x9G7SRaAdLMmgIR0A0JYP5HmRvdX2UKGgGR8AhN+Vkc0cfaAdLMmgIR0A0Cn6Eal1sdX2UKGgGR8AxHiKiwjdIaAdLMmgIR0A0OWpqASWadX2UKGgGR8Ajg+s5n13/aAdLMmgIR0A0dEPDpC8fdX2UKGgGR7+ku8K5TZQIaAdLAWgIR0A0dw8GLUCrdX2UKGgGR8AxvNzbN8mbaAdLMmgIR0A0tdmxt52RdX2UKGgGR8AqfCFbmlqKaAdLMmgIR0A0oUbkwN9ZdX2UKGgGR8AiD8NQTEiuaAdLMmgIR0A00Aiml67edX2UKGgGR7+7PgNwzch1aAdLAmgIR0A0ppVjqfOEdX2UKGgGR8AlLIsiB5HFaAdLMmgIR0A1DeuV5a/zdX2UKGgGR8At3t1IRRMwaAdLMmgIR0A1TZ4wAU+LdX2UKGgGR7/73wPRRdhRaAdLDWgIR0A1NA/9pAUtdX2UKGgGR8AFTgKneiztaAdLF2gIR0A1kPo3aSLZdX2UKGgGR8Aj369kBjnWaAdLMmgIR0A1YId2gWaddX2UKGgGR8Aoj/o7muDBaAdLMmgIR0A1Nx1PnB+GdX2UKGgGR8AmHrmhdt2taAdLMmgIR0A1wkhzNliCdX2UKGgGR8AgeNgjQiRoaAdLMmgIR0A2HQgLZzxPdX2UKGgGR8AScygwoLG8aAdLJWgIR0A1oA6+36RAdX2UKGgGR8AlfX9zfaYeaAdLMmgIR0A17WyTpxFRdX2UKGgGR7/BN34bjtG/aAdLAmgIR0A18kELYwqRdX2UKGgGR8ANVDIBBAv+aAdLHmgIR0A2cNpM6BAfdX2UKGgGR8Ap+oJiRW92aAdLMmgIR0A2T6zE74i5dX2UKGgGR8ArgZKFqSHNaAdLMmgIR0A2K7+DOC5FdX2UKGgGR8Aivwjt5UtJaAdLMmgIR0A2f974SHuadX2UKGgGR8Aqo8vmHP/raAdLMmgIR0A2/0rsjVx0dX2UKGgGR8AlCebNKRMfaAdLMmgIR0A23ZzxPO6edX2UKGgGR8Akh4xDb8FZaAdLMmgIR0A2upMYdhiLdX2UKGgGR8APCMcZLqUvaAdLEmgIR0A3EZ7HAAQydX2UKGgGR8AprxgiNbTuaAdLMmgIR0A3DT7EYO2BdX2UKGgGR7/ZocrAgxJvaAdLBWgIR0A3Gs0HhS9/dX2UKGgGR8AteFRpDeCTaAdLMmgIR0A3iRBNVR1pdX2UKGgGR8AtYwYcebNKaAdLMmgIR0A3Rl1r6+FldX2UKGgGR8Awg0HQhOgyaAdLMmgIR0A3nXo1UEPldX2UKGgGR8AofbYbsF+vaAdLMmgIR0A3q+BpYcNpdX2UKGgGR8AhqizLOiWWaAdLMmgIR0A4HLtNSIgvdX2UKGgGR8Aj1vKEFnqWaAdLMmgIR0A32R1oxpL3dX2UKGgGR8AlVU4rBj4IaAdLMmgIR0A4MEJSiudPdX2UKGgGR8Al5lOGj9GaaAdLMmgIR0A4OPXCj1wpdX2UKGgGR8AxNKArhBJJaAdLMmgIR0A4p8ohIOH4dX2UKGgGR8AmQ5z5oGpuaAdLMmgIR0A4Yv2oNutPdX2UKGgGR8AnJy6tknTiaAdLMmgIR0A4ugUUO/cndX2UKGgGR7+65NGmUGFBaAdLAmgIR0A4ac3EQ5FPdX2UKGgGR8Aguu14Pf8/aAdLMmgIR0A4w3/giu+zdX2UKGgGR7/WB42S+xnnaAdLBGgIR0A4zufmLcbjdX2UKGgGR7+gydnTRYzSaAdLAWgIR0A40acqe9SNdX2UKGgGR8AjAus90RvnaAdLMmgIR0A5M7LMcIZ7dX2UKGgGR8Axn2g3974SaAdLMmgIR0A5SNkOI68ydX2UKGgGR8AzyJyhi9ZiaAdLMmgIR0A4+KjzqbBodX2UKGgGR8AuYzXz19ORaAdLMmgIR0A5YiKiwjdIdX2UKGgGR8AdlCAtnPE9aAdLMmgIR0A5w9aEBbOedX2UKGgGR8A0HV45cTrWaAdLMmgIR0A51Elme18cdX2UKGgGR8AxBMOPNmlJaAdLMmgIR0A5hB/I8yN5dX2UKGgGR8Ay7meUY8+zaAdLMmgIR0A5755JK8L8dX2UKGgGR8AoatvGZNO/aAdLMmgIR0A6Udf9gnc+dX2UKGgGR8AlfCVrylN2aAdLMmgIR0A6ZAIppeu3dX2UKGgGR8AvTWy1NQCTaAdLMmgIR0A6E42jwhGIdX2UKGgGR8A0ru7HyVfNaAdLMmgIR0A6fYSxqwhXdX2UKGgGR8Ayf2+PBBRiaAdLMmgIR0A63u7HyVfNdX2UKGgGR8AxfnDiwSrYaAdLMmgIR0A68jPfKp1idX2UKGgGR8AxQxzJZGKAaAdLMmgIR0A6ojkMkQf7dX2UKGgGR8AqD/BnBciXaAdLMmgIR0A7C2FnIyTIdX2UKGgGR8A1xUD+zdDZaAdLMmgIR0A7bTKT0QK8dX2UKGgGR8Awhf029+PSaAdLMmgIR0A7gzBAOavzdX2UKGgGR8AyELlFMIu5aAdLMmgIR0A7M5UtI066dX2UKGgGR7/xO9vjwQUYaAdLC2gIR0A7Ut9hJAdGdX2UKGgGR8AjiSAYpDu0aAdLMmgIR0A7n5IYm9g4dX2UKGgGR8AlMlKsdT5waAdLMmgIR0A8AmDlHSWrdX2UKGgGR8AqIwSrYGt7aAdLMmgIR0A8G1DjR2KVdX2UKGgGR8AozjT8YQ8PaAdLMmgIR0A766H0se4kdX2UKGgGR8AfUdGRV6u5aAdLMmgIR0A8OXenAIppdX2UKGgGR8AlmyN4qwyJaAdLMmgIR0A8m6kIomXxdX2UKGgGR8AAUJv5xiobaAdLDGgIR0A8vDvVmSQpdX2UKGgGR8AqwaqCHymRaAdLMmgIR0A8qcoYvWYndX2UKGgGR8AkZ3Fkxyn2aAdLMmgIR0A8ehouf29MdX2UKGgGR8AgtkVeruIAaAdLMmgIR0A8yzFdcB2fdX2UKGgGR8Aijv3JxNqQaAdLMmgIR0A9UKfWcz68dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 500, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVRQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg7ihDMg/TEG+shKpzHHjGzFiRpjANpbmOUihDv27gsnw+t0aUriENXCq5bdYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS9vcHQvY29uZGEvbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvb3B0L2NvbmRhL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.31 # 1 SMP Thu Aug 24 17:32:58 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.0+cpu", "GPU Enabled": "False", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}