heaven1-base / config.yaml
Tomas
Add initial project setup with model configuration, requirements, and upload script
58af2e6 unverified
# Heaven Model Configuration for Llama 3.2 Fine-tuning
# Dataset configuration
dataset:
size: 10000 # Number of examples to generate
predatory_ratio: 0.5 # Ratio of predatory examples (0-1)
output_path: "data/heaven_dataset.jsonl"
# Model configuration
model:
name_or_path: "meta-llama/Llama-3.2-3B-Instruct" # HuggingFace model identifier
output_dir: "./heaven1-base-8b" # Directory to save fine-tuned model
# Training configuration
training:
num_epochs: 3 # Number of training epochs
batch_size: 1 # Batch size per device
gradient_accumulation_steps: 8 # Number of steps to accumulate gradients
learning_rate: 2e-5 # Initial learning rate
weight_decay: 0.01 # Weight decay coefficient
max_grad_norm: 1.0 # Max gradient norm for clipping
warmup_ratio: 0.1 # Linear warmup ratio
eval_ratio: 0.1 # Portion of data used for evaluation
max_seq_length: 4096 # Maximum sequence length
# PEFT configuration (Parameter-Efficient Fine-Tuning)
peft:
use_lora: true # Whether to use LoRA
use_qlora: true # Whether to use QLoRA (quantized LoRA)
lora_r: 16 # LoRA rank
lora_alpha: 32 # LoRA scaling factor
lora_dropout: 0.05 # LoRA dropout rate
# Precision configuration
precision:
fp16: false # Whether to use fp16 mixed precision
bf16: true # Whether to use bf16 mixed precision
compute_dtype: "float16" # Compute dtype for quantization
# Logging configuration
logging:
use_wandb: false # Whether to use Weights & Biases
run_name: "heaven-llama3-2" # Name of the run
logging_steps: 10 # Steps between logging
eval_steps: 100 # Steps between evaluation
save_steps: 100 # Steps between saving checkpoints