Update script.py
Browse files
script.py
CHANGED
@@ -5,6 +5,7 @@ import tqdm.auto as tqdm
|
|
5 |
import os
|
6 |
import io
|
7 |
import torch
|
|
|
8 |
import time
|
9 |
import av
|
10 |
import torch
|
@@ -16,27 +17,53 @@ import numpy as np
|
|
16 |
# So you must include everything you need in your model repo.
|
17 |
|
18 |
|
19 |
-
def preprocess(
|
20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
21 |
file_like.seek(0)
|
22 |
container = av.open(file_like)
|
23 |
frames = []
|
24 |
every = 10
|
25 |
-
MAX_MEMORY = 100 * 1024 * 1024 ## 100 MB maximum - some videos are large
|
26 |
current_memory = 0
|
27 |
for i, frame in enumerate(container.decode(video=0)):
|
28 |
if i % every == 0:
|
29 |
frame_array = frame.to_ndarray(format="rgb24")
|
30 |
frame_tensor = torch.from_numpy(frame_array).permute(2, 0, 1).float()
|
31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
## Memory check
|
33 |
-
frame_bytes = frame_tensor.numel() * 4 # float32
|
34 |
current_memory += frame_bytes
|
35 |
-
if current_memory >=
|
36 |
break
|
37 |
|
38 |
-
|
39 |
-
return
|
40 |
|
41 |
|
42 |
class Model(torch.nn.Module):
|
@@ -71,11 +98,9 @@ for el in tqdm.tqdm(dataset_remote):
|
|
71 |
# el["video"]["path"] containts the filename. This is just for reference and you cant actually load it
|
72 |
|
73 |
# if you are using libraries that expect a file. You can use BytesIO object
|
74 |
-
# print("processing", el["id"])
|
75 |
-
raise ValueError
|
76 |
try:
|
77 |
file_like = io.BytesIO(el["video"]["bytes"])
|
78 |
-
tensor = preprocess(file_like)
|
79 |
|
80 |
with torch.no_grad():
|
81 |
# soft decision (such as log likelihood score)
|
@@ -90,11 +115,11 @@ for el in tqdm.tqdm(dataset_remote):
|
|
90 |
# "id" and "pred" are required. "score" will not be used in scoring but we encourage you to include it. We'll use it for analysis of the results
|
91 |
|
92 |
out.append(dict(id=el["id"], pred=pred, score=score))
|
|
|
93 |
except Exception as e:
|
94 |
print(e)
|
95 |
print("failed", el["id"])
|
96 |
-
# raise e
|
97 |
out.append(dict(id=el["id"]))
|
98 |
|
99 |
# save the final result and that's it
|
100 |
-
pd.DataFrame(out).to_csv("submission.csv", index=False)
|
|
|
5 |
import os
|
6 |
import io
|
7 |
import torch
|
8 |
+
from torchvision import transforms
|
9 |
import time
|
10 |
import av
|
11 |
import torch
|
|
|
17 |
# So you must include everything you need in your model repo.
|
18 |
|
19 |
|
20 |
+
def preprocess(
|
21 |
+
file_like: io.BytesIO, crop_size: int = -1, max_memory: int = 50 * 1024 * 1024, device: str = "cpu"
|
22 |
+
) -> torch.Tensor:
|
23 |
+
"""
|
24 |
+
This preprocessing function loads videos and reduces their input size if necessary.
|
25 |
+
This is just a guide function; square center cropping may not be the most appropriate,
|
26 |
+
50 MB per video may not be enough, etc.
|
27 |
+
|
28 |
+
Args:
|
29 |
+
file_like (io.BytesIO): video bytes
|
30 |
+
crop_size (int, optional): center crop adjustment (if frames are too large, this will crop)
|
31 |
+
max_memory (int, optional): maximum memory per video to be saved as a tensor
|
32 |
+
device (str, optional): which device to store the tensors on
|
33 |
+
Returns:
|
34 |
+
torch.Tensor: Tensor of video
|
35 |
+
"""
|
36 |
+
## Define crop if applicable
|
37 |
+
center_crop_transform = None
|
38 |
+
if crop_size > 0:
|
39 |
+
center_crop_transform = transforms.CenterCrop(crop_size)
|
40 |
+
|
41 |
+
## Open the video file
|
42 |
file_like.seek(0)
|
43 |
container = av.open(file_like)
|
44 |
frames = []
|
45 |
every = 10
|
|
|
46 |
current_memory = 0
|
47 |
for i, frame in enumerate(container.decode(video=0)):
|
48 |
if i % every == 0:
|
49 |
frame_array = frame.to_ndarray(format="rgb24")
|
50 |
frame_tensor = torch.from_numpy(frame_array).permute(2, 0, 1).float()
|
51 |
+
|
52 |
+
## Crop
|
53 |
+
if center_crop_transform is not None:
|
54 |
+
frame_tensor = center_crop_transform(frame_tensor)
|
55 |
+
|
56 |
+
## Append to the list
|
57 |
+
frames.append(frame_tensor.to(device))
|
58 |
+
|
59 |
## Memory check
|
60 |
+
frame_bytes = frame_tensor.numel() * 4 # float32 = 4 bytes
|
61 |
current_memory += frame_bytes
|
62 |
+
if current_memory >= max_memory:
|
63 |
break
|
64 |
|
65 |
+
## Stack as video
|
66 |
+
return torch.stack(frames)
|
67 |
|
68 |
|
69 |
class Model(torch.nn.Module):
|
|
|
98 |
# el["video"]["path"] containts the filename. This is just for reference and you cant actually load it
|
99 |
|
100 |
# if you are using libraries that expect a file. You can use BytesIO object
|
|
|
|
|
101 |
try:
|
102 |
file_like = io.BytesIO(el["video"]["bytes"])
|
103 |
+
tensor = preprocess(file_like, device=device)
|
104 |
|
105 |
with torch.no_grad():
|
106 |
# soft decision (such as log likelihood score)
|
|
|
115 |
# "id" and "pred" are required. "score" will not be used in scoring but we encourage you to include it. We'll use it for analysis of the results
|
116 |
|
117 |
out.append(dict(id=el["id"], pred=pred, score=score))
|
118 |
+
|
119 |
except Exception as e:
|
120 |
print(e)
|
121 |
print("failed", el["id"])
|
|
|
122 |
out.append(dict(id=el["id"]))
|
123 |
|
124 |
# save the final result and that's it
|
125 |
+
pd.DataFrame(out).to_csv("submission.csv", index=False)
|