import torch | |
class Model(torch.nn.Module): | |
def __init__(self): | |
super(Model, self).__init__() | |
self.fc1 = torch.nn.Linear(10, 5) | |
self.threshold = 0. | |
def forward(self, x): | |
## generates a random float the same size as x | |
return torch.randn(x.shape[0]).to(x.device) | |