saeedHedayatian
commited on
Commit
•
11048f4
1
Parent(s):
c82185f
First commit
Browse files- README.md +20 -11
- config.json +1 -1
- lunar_lander_ppo_v1.zip +3 -0
- lunar_lander_ppo_v1/_stable_baselines3_version +1 -0
- lunar_lander_ppo_v1/data +95 -0
- lunar_lander_ppo_v1/policy.optimizer.pth +3 -0
- lunar_lander_ppo_v1/policy.pth +3 -0
- lunar_lander_ppo_v1/pytorch_variables.pth +3 -0
- lunar_lander_ppo_v1/system_info.txt +7 -0
- replay.mp4 +2 -2
- results.json +1 -1
README.md
CHANGED
@@ -8,21 +8,30 @@ tags:
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
-
-
|
12 |
-
- type: mean_reward
|
13 |
-
value: 285.11 +/- 17.64
|
14 |
-
name: mean_reward
|
15 |
-
task:
|
16 |
type: reinforcement-learning
|
17 |
name: reinforcement-learning
|
18 |
dataset:
|
19 |
name: LunarLander-v2
|
20 |
type: LunarLander-v2
|
|
|
|
|
|
|
|
|
|
|
21 |
---
|
22 |
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
8 |
model-index:
|
9 |
- name: PPO
|
10 |
results:
|
11 |
+
- task:
|
|
|
|
|
|
|
|
|
12 |
type: reinforcement-learning
|
13 |
name: reinforcement-learning
|
14 |
dataset:
|
15 |
name: LunarLander-v2
|
16 |
type: LunarLander-v2
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: 269.56 +/- 26.62
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
---
|
23 |
|
24 |
+
# **PPO** Agent playing **LunarLander-v2**
|
25 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fa96d89aa70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fa96d89ab00>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fa96d89ab90>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fa96d89ac20>", "_build": "<function ActorCriticPolicy._build at 0x7fa96d89acb0>", "forward": "<function ActorCriticPolicy.forward at 0x7fa96d89ad40>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fa96d89add0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fa96d89ae60>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fa96d89aef0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fa96d89af80>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fa96d8a0050>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fa96d8e3a80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVbgAAAAAAAAB9lCiMDWFjdGl2YXRpb25fZm6UjBt0b3JjaC5ubi5tb2R1bGVzLmFjdGl2YXRpb26UjARUYW5olJOUjAhuZXRfYXJjaJRdlH2UKIwCdmaUXZQoS4BLQEtAZYwCcGmUXZQoS0BLgEtAS0BldWF1Lg==", "activation_fn": "<class 'torch.nn.modules.activation.Tanh'>", "net_arch": [{"vf": [128, 64, 64], "pi": [64, 128, 64, 64]}]}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 32, "num_timesteps": 2031616, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651788539.3275006, "learning_rate": 0.0005, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9AYk3S8an8hZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQQAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYABAAAAAAAAJqUzTzXIim7z4eNvJXthDwZVTC8kF5kPQAAgD8AAIA/ZuzdPEZ3rT87bgQ+B469vhH6gT3aytg9AAAAAAAAAACT3Gk+S3QhPwnbMj1DZg2/tvXEPhYItb0AAAAAAAAAAGa1hj0f8Z+77O6TvWPjTL5S9KO8feR2PgAAgD8AAAAAZsJQvQsAMD82P3m9WRmCv4Z2Zr2edYa9AAAAAAAAAAAAFLg8heOauTpZHL23M7w87HhYO7elpD0AAIA/AACAP/OB1j2NXTM+YEByviwWAL9W1HA6JRIlvgAAAAAAAAAAQB64vYmeXD3WNW0+h0Fbvg1ANDv4CbM8AAAAAAAAAACz4p09lGljP27B0T3W1nu/9HwSPgY7WbwAAAAAAAAAAPN/vz1Icbk797UAPVZOk7wCn8U92FCOvAAAAAAAAIA/86aFPSm8SLrJO0sylZiEsQ/jhju6FkqzAACAPwAAgD8Awmg8n7ShPxVp0z0xcTG/tY/aPIKZxD0AAAAAAAAAAM2Rcr1JMu8++wSNPUrbN78puHC9sEfcOwAAAAAAAAAAALLnvMOhKrqXiMm6uk8YtnL0PrsjBuw5AACAPwAAgD8DnVi+GUviPkj4lj6TZ/y+pI0gvY6YNT4AAAAAAAAAAOAtUj4TQNw+uxJtvuTtLb/YIOk9SkddvgAAAAAAAAAAzfzjOv6ptD/VI7Q9dtOuuoA2Aru7iKG8AAAAAAAAAADm5E894eiYulYU4bxOnVQ0GwmFuv5W2bMAAIA/AACAP/PRoL3plgu8KC8pPXnzQr6jTgi96vQOPwAAgD8AAIA/xpNSvnAc1j4MgMU+gUgHv5pKob3+kKg+AAAAAAAAAADNEo29hVP9uRqwqT1POCezB089u75HGLMAAIA/AACAP9r42b3D7RS6lno2PkfbHb5p47w81UZCvwAAAAAAAIA/oHssPs4p1D0bDcS+NR3uvjM9Ub3gICq+AAAAAAAAAABm9oe8pGQSOnfwGTka+3Yzi3lIvMIhPrgAAIA/AACAPxM8CL6CYQM+u9JpPgRsAL8Ao7Y9HNcQPQAAAAAAAAAAmsbJPI+2ULqzHvI2AGwKsO2h1boSVA22AACAPwAAgD9mht66j1ZNur+ILDGpQlwwgyqpOg4rADIAAIA/AACAP5r7jDwFGLY/lvesPjMUUT2QhRC87SMUuwAAAAAAAAAAAMuqveqvqT9t7Oa+V8Dfvqbal71K/Wi+AAAAAAAAAABNVQs9E8e6PwvCzT5wQDM+o65yPMg9/D0AAAAAAAAAACAVQT6HAzI/Vow1vSoE+r6AWak+R9STvQAAAAAAAAAAgFZIPVL47bkf9DG2DjOWsR2UBTsyjFo1AACAPwAAgD+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSyBLCIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYLAbtm3Lc0CUhpRSlIwBbJRLuYwBdJRHQKA1NjgAIY51fZQoaAZoCWgPQwjg1XJnJggzQJSGlFKUaBVLUWgWR0CgNWH27FsIdX2UKGgGaAloD0MIODC5USTrcUCUhpRSlGgVS9toFkdAoDVnixVyWHV9lChoBmgJaA9DCOtySkBMP3FAlIaUUpRoFUupaBZHQKA1qDPnjhl1fZQoaAZoCWgPQwhpdAexM0ZzQJSGlFKUaBVLsGgWR0CgNij5KvmpdX2UKGgGaAloD0MIgEkqU4wrc0CUhpRSlGgVS8doFkdAoDYuz8gp0HV9lChoBmgJaA9DCAqGcw2zUnNAlIaUUpRoFUuzaBZHQKA2OLk0aZR1fZQoaAZoCWgPQwg3UrZIGhlwQJSGlFKUaBVLmGgWR0CgNlrNfPX1dX2UKGgGaAloD0MI78ftl89Gc0CUhpRSlGgVS7loFkdAoDZpSm65G3V9lChoBmgJaA9DCGyx22dVqHFAlIaUUpRoFUu6aBZHQKA2bnyNGVl1fZQoaAZoCWgPQwgnhXmPM4dyQJSGlFKUaBVLx2gWR0CgNnX49HMEdX2UKGgGaAloD0MIDhR4J989cUCUhpRSlGgVS55oFkdAoDZ6fDk2gnV9lChoBmgJaA9DCGrcm9+wfXBAlIaUUpRoFUutaBZHQKA2fmV7hNx1fZQoaAZoCWgPQwjGFRdH5YtzQJSGlFKUaBVLvmgWR0CgNp0BwMpgdX2UKGgGaAloD0MI/RNcrGjGckCUhpRSlGgVS75oFkdAoDa8ngHeJ3V9lChoBmgJaA9DCOIEptO6hXFAlIaUUpRoFUuLaBZHQKA2vHhCMP11fZQoaAZoCWgPQwhQjCyZo7ZwQJSGlFKUaBVLsmgWR0CgNt5z5oGqdX2UKGgGaAloD0MIMQqCx3dOckCUhpRSlGgVS4VoFkdAoDbviT+vQnV9lChoBmgJaA9DCO+qB8xD1nJAlIaUUpRoFUutaBZHQKA3HaURnOB1fZQoaAZoCWgPQwgTtTS3wtdyQJSGlFKUaBVLw2gWR0CgNylp48lpdX2UKGgGaAloD0MI31M57emYc0CUhpRSlGgVS+poFkdAoDcv/1g6VHV9lChoBmgJaA9DCErOiT00NXBAlIaUUpRoFUuHaBZHQKA3NY+0PYp1fZQoaAZoCWgPQwhDPBIvz3hzQJSGlFKUaBVLv2gWR0CgNzhmXgLrdX2UKGgGaAloD0MIlltaDUl0ckCUhpRSlGgVS8xoFkdAoDdGNDMNdHV9lChoBmgJaA9DCH4a9+b3fnJAlIaUUpRoFUuuaBZHQKA3RiCrcTJ1fZQoaAZoCWgPQwjpZRTL7aNxQJSGlFKUaBVLr2gWR0CgOAt/4IrwdX2UKGgGaAloD0MI+G9enPiSc0CUhpRSlGgVS8FoFkdAoDgeNkvsaHV9lChoBmgJaA9DCKHzGrsEC3NAlIaUUpRoFUvZaBZHQKA4LpGnXNF1fZQoaAZoCWgPQwhihPBo44NwQJSGlFKUaBVLn2gWR0CgOGsUIsy0dX2UKGgGaAloD0MIOdTvwlZQc0CUhpRSlGgVS9RoFkdAoDiHYe1a4nV9lChoBmgJaA9DCF7WxAJf7W5AlIaUUpRoFUubaBZHQKA4jHoX9BN1fZQoaAZoCWgPQwhjR+NQf3pyQJSGlFKUaBVLxmgWR0CgOPF5fMOgdX2UKGgGaAloD0MIuqC+ZY4gcUCUhpRSlGgVS7loFkdAoDkpa/yoXXV9lChoBmgJaA9DCJ9x4UCI8nFAlIaUUpRoFUvGaBZHQKA5J+XqqwR1fZQoaAZoCWgPQwjdmnRb4sJwQJSGlFKUaBVLjmgWR0CgOVbZ39rHdX2UKGgGaAloD0MIEDtT6PyGcUCUhpRSlGgVS41oFkdAoDlXJo0yg3V9lChoBmgJaA9DCKBvC5aqk3BAlIaUUpRoFUuOaBZHQKA5qBT4tYl1fZQoaAZoCWgPQwhzK4TVGLZzQJSGlFKUaBVLw2gWR0CgOagZCOWCdX2UKGgGaAloD0MIFYxK6gRXckCUhpRSlGgVS9loFkdAoDm0rVe8f3V9lChoBmgJaA9DCImXp3PFgHNAlIaUUpRoFUujaBZHQKA5wv6j3251fZQoaAZoCWgPQwjBVDNrKS1wQJSGlFKUaBVLjmgWR0CgOc9y1eBydX2UKGgGaAloD0MINIY5QVuecUCUhpRSlGgVS7hoFkdAoDnrZamoBXV9lChoBmgJaA9DCCp0XmMXM3JAlIaUUpRoFUuTaBZHQKA5+bSZ0CB1fZQoaAZoCWgPQwhVhnE3yGlyQJSGlFKUaBVLwGgWR0CgOiLP+n63dX2UKGgGaAloD0MIaAdcV8yrc0CUhpRSlGgVS7BoFkdAoDo0Hnlny3V9lChoBmgJaA9DCNBCAkaXQHNAlIaUUpRoFUu7aBZHQKA6OHyEtd11fZQoaAZoCWgPQwjVWS2wBzdzQJSGlFKUaBVLyGgWR0CgOkH2ys0YdX2UKGgGaAloD0MIVz82yc+NcUCUhpRSlGgVS61oFkdAoDpG5nUUf3V9lChoBmgJaA9DCBCTcCFPNHJAlIaUUpRoFUvGaBZHQKA6YFPBSDR1fZQoaAZoCWgPQwg3cXK/g3lyQJSGlFKUaBVLfGgWR0CgOpbg0j1PdX2UKGgGaAloD0MI8pTVdL2+b0CUhpRSlGgVS6VoFkdAoDqkjTrmhnV9lChoBmgJaA9DCCo6ksv/U3FAlIaUUpRoFUuyaBZHQKA61fek56t1fZQoaAZoCWgPQwjAdjBin1xzQJSGlFKUaBVLs2gWR0CgOtYJVsDXdX2UKGgGaAloD0MISDFAogkGc0CUhpRSlGgVS7FoFkdAoDri1LJ0XHV9lChoBmgJaA9DCMKJ6NdWAHNAlIaUUpRoFUvmaBZHQKA7FfAKv3d1fZQoaAZoCWgPQwjNBS6PNQRyQJSGlFKUaBVLyWgWR0CgO0LVe8f3dX2UKGgGaAloD0MIN8R4zes3ckCUhpRSlGgVS9NoFkdAoDt3dsSCe3V9lChoBmgJaA9DCI6R7BEqU3FAlIaUUpRoFUuraBZHQKA7sBOpKjB1fZQoaAZoCWgPQwhUNUHUvV9zQJSGlFKUaBVL12gWR0CgO6/B3zMBdX2UKGgGaAloD0MISU27mOZWcUCUhpRSlGgVS79oFkdAoDw2H8CPqHV9lChoBmgJaA9DCF6hD5ZxaHBAlIaUUpRoFUuvaBZHQKA8QfCAMDx1fZQoaAZoCWgPQwhnYroQ6zpxQJSGlFKUaBVLwGgWR0CgPJ717IDHdX2UKGgGaAloD0MIyH4WSxEicUCUhpRSlGgVS6VoFkdAoDzjvgFX73V9lChoBmgJaA9DCL3hPnLrqHFAlIaUUpRoFUuZaBZHQKA9DldTo+x1fZQoaAZoCWgPQwiRup19Jc5yQJSGlFKUaBVLy2gWR0CgPVyMUAT7dX2UKGgGaAloD0MIAfvo1NVic0CUhpRSlGgVS+poFkdAoD2HsolUqHV9lChoBmgJaA9DCLYsX5fh0XJAlIaUUpRoFUu/aBZHQKA9j5C4SYh1fZQoaAZoCWgPQwhqiZXRyAlxQJSGlFKUaBVLpGgWR0CgPY/LLZBcdX2UKGgGaAloD0MIFAX6RB66cUCUhpRSlGgVS5poFkdAoD2swztTk3V9lChoBmgJaA9DCExV2uIa0XBAlIaUUpRoFUumaBZHQKA9rHnU2DR1fZQoaAZoCWgPQwiAYmTJ3ClzQJSGlFKUaBVLuGgWR0CgPcQazeGgdX2UKGgGaAloD0MIFtukovG0cUCUhpRSlGgVS59oFkdAoD3YPZqVQnV9lChoBmgJaA9DCIdqSrLOQ3JAlIaUUpRoFUuoaBZHQKA94lAu7H11fZQoaAZoCWgPQwhaLbDHBKRzQJSGlFKUaBVLy2gWR0CgPh2PT5O8dX2UKGgGaAloD0MIEjKQZxd5c0CUhpRSlGgVS+NoFkdAoD4k9lmOEXV9lChoBmgJaA9DCPZ+ox33sXBAlIaUUpRoFUuRaBZHQKA+KygPEsJ1fZQoaAZoCWgPQwj9vRQe9OhzQJSGlFKUaBVL5WgWR0CgPi3Upd8idX2UKGgGaAloD0MIQ+c1dolmc0CUhpRSlGgVS9FoFkdAoD4/BnBciXV9lChoBmgJaA9DCD6uDRWjGnJAlIaUUpRoFUu7aBZHQKA+WtvGZNR1fZQoaAZoCWgPQwii7gOQ2ohwQJSGlFKUaBVLqmgWR0CgPn9/rjYJdX2UKGgGaAloD0MIO3KkMzCLcUCUhpRSlGgVS9loFkdAoD6RwuM+/3V9lChoBmgJaA9DCN/BTxyAPnJAlIaUUpRoFUuJaBZHQKA+mxSHdoF1fZQoaAZoCWgPQwjn49pQcZZxQJSGlFKUaBVLq2gWR0CgPrenZTQ3dX2UKGgGaAloD0MITN9rCI5SdECUhpRSlGgVS8poFkdAoD7aaZx7zHV9lChoBmgJaA9DCDhLyXJSC3RAlIaUUpRoFUvRaBZHQKA+3chTwUh1fZQoaAZoCWgPQwjMKJZb2qlxQJSGlFKUaBVLx2gWR0CgPwm4ZuQ7dX2UKGgGaAloD0MIAKq4cQtubkCUhpRSlGgVS5toFkdAoD8o3T/hl3V9lChoBmgJaA9DCIqtoGmJ3XJAlIaUUpRoFUvFaBZHQKA/TLPD50t1fZQoaAZoCWgPQwhwB+qUR+ZzQJSGlFKUaBVLvGgWR0CgP1NtZV4pdX2UKGgGaAloD0MISZ2AJkI7c0CUhpRSlGgVS71oFkdAoD+EB4lhPXV9lChoBmgJaA9DCITXLm340HJAlIaUUpRoFUuSaBZHQKA/03Q2MsJ1fZQoaAZoCWgPQwhaKQRyyddzQJSGlFKUaBVLv2gWR0CgP+ig9NeudX2UKGgGaAloD0MI9FDbhpEkckCUhpRSlGgVS65oFkdAoEAHo1UEPnV9lChoBmgJaA9DCDrObcK9A3NAlIaUUpRoFUuQaBZHQKBABcDbJwN1fZQoaAZoCWgPQwhuMNRhhUNAQJSGlFKUaBVLZGgWR0CgQNbVjI7vdX2UKGgGaAloD0MIh8H8FTJzcECUhpRSlGgVS69oFkdAoEDksQNCq3V9lChoBmgJaA9DCLa93ZLce3NAlIaUUpRoFUvXaBZHQKBBAzAN5MV1fZQoaAZoCWgPQwjZeLDFLodyQJSGlFKUaBVLoGgWR0CgQRevIOpbdX2UKGgGaAloD0MIWCB6UmaycECUhpRSlGgVS5toFkdAoEEoiiZfD3V9lChoBmgJaA9DCDUJ3pAGP3FAlIaUUpRoFUusaBZHQKBBOWl/H5t1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 992, "n_steps": 1024, "gamma": 0.99, "gae_lambda": 0.99, "ent_coef": 0.0, "vf_coef": 1, "max_grad_norm": 0.5, "batch_size": 256, "n_epochs": 16, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "False", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fd01d261f70>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd01d265040>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd01d2650d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd01d265160>", "_build": "<function ActorCriticPolicy._build at 0x7fd01d2651f0>", "forward": "<function ActorCriticPolicy.forward at 0x7fd01d265280>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd01d265310>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd01d2653a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7fd01d265430>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd01d2654c0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd01d265550>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd01d2655e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fd01d25f660>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1676417846475543700, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJphmDzhUuE5ijXONqQrUzKcvZ24skT/tQAAgD8AAIA/M9tbu/ZMcbo1BxO0MoBVsOfsQ7pKyKEzAACAPwAAgD+amOQ8CQFbPnT2E7zGqTe+1gWmvHIigz0AAAAAAAAAABOXVb5OPtu8ZtklvpyhsLx8YE8+lqiHPQAAgD8AAIA/ZqZJO8OBa7o+fa25xFWPtEQOvrksyMc4AACAPwAAgD+aB/u8ce1zuYfkNbjvFwSzUP4xuYoWUzcAAIA/AACAP2aZS70JTlQ/bGvCPBZhx741c7q92SycPQAAAAAAAAAAADuGPOHMqLquH0a61TAatssJhbpogGM5AACAPwAAgD9mNLM9KYxXulYAwzoUnlU2It+aOyPS4LkAAAAAAACAPzOCBz355VI+0hMUvs2qKb5tmhK9S1R+PAAAAAAAAAAAs74hPT06CLnM+ZA5hoW8NGFuCblGaqq4AACAPwAAgD+aVGw9rtuMupDrJDjvmBAzxsACu8yGP7cAAIA/AACAP5oh+Ls4drU/bVtEvyuWmT6K3w88R+kxPgAAAAAAAAAAs8dtPa5nxLjUTjC7wGmBtulzKbmG2E46AACAPwAAgD+NE+E9H9WmuenGHTjm2CAzBH37uh7tOLcAAIA/AACAP2YI8rz2QDW6bjvJum/SHLVutwG7e4rlOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYaku4GV7ZUCUhpRSlIwBbJRN6AOMAXSUR0Cd5f1mrbQDdX2UKGgGaAloD0MIm6xRD9EzYkCUhpRSlGgVTegDaBZHQJ3muvZAY511fZQoaAZoCWgPQwgJNNjU+bZmQJSGlFKUaBVN6ANoFkdAnejgla8pTnV9lChoBmgJaA9DCJi9bDtt92JAlIaUUpRoFU3oA2gWR0Cd607oB7u2dX2UKGgGaAloD0MICVBTy9ZZZECUhpRSlGgVTegDaBZHQJ3sE5hjOLR1fZQoaAZoCWgPQwitTzkmizNjQJSGlFKUaBVN6ANoFkdAnexJfx+a0HV9lChoBmgJaA9DCHptNlaiknBAlIaUUpRoFU3fA2gWR0Cd7FYzSCvpdX2UKGgGaAloD0MISmJJuXuGZUCUhpRSlGgVTegDaBZHQJ3sqVX3g1p1fZQoaAZoCWgPQwgK2A5G7D9nQJSGlFKUaBVN6ANoFkdAne6rEtNBW3V9lChoBmgJaA9DCGueI/JdCWNAlIaUUpRoFU3oA2gWR0Cd9xby6MBIdX2UKGgGaAloD0MIBKp/EEkaYkCUhpRSlGgVTegDaBZHQJ38Ct5le4V1fZQoaAZoCWgPQwgWodgKGollQJSGlFKUaBVN6ANoFkdAnf/ddqtYCHV9lChoBmgJaA9DCBqIZTMHp2NAlIaUUpRoFU3oA2gWR0CeAS4vvjOtdX2UKGgGaAloD0MIKQmJtI3oXUCUhpRSlGgVTegDaBZHQJ4NPGm1pkB1fZQoaAZoCWgPQwj2mEhptpFvQJSGlFKUaBVNUwJoFkdAng4rpA2Q4nV9lChoBmgJaA9DCMLZrWWy92NAlIaUUpRoFU3oA2gWR0CeDo4XXRPXdX2UKGgGaAloD0MIyR6hZkidZkCUhpRSlGgVTegDaBZHQJ5Wwd2gWad1fZQoaAZoCWgPQwjEz38P3vlyQJSGlFKUaBVNJgFoFkdAnlcFPWQOnXV9lChoBmgJaA9DCGfV52qrRmRAlIaUUpRoFU3oA2gWR0CeV3eyiVSodX2UKGgGaAloD0MIWvYksDmdY0CUhpRSlGgVTegDaBZHQJ5YFRMvh611fZQoaAZoCWgPQwgy5Nh6hkZxQJSGlFKUaBVN5ANoFkdAnlnaLn9vTHV9lChoBmgJaA9DCNEgBU+hu2BAlIaUUpRoFU3oA2gWR0CeXFSlFc6edX2UKGgGaAloD0MI1xh0Quj+ZkCUhpRSlGgVTegDaBZHQJ5dE8hcJMR1fZQoaAZoCWgPQwi5HK9AdI9hQJSGlFKUaBVN6ANoFkdAnl0+cH4XXXV9lChoBmgJaA9DCL8n1qnyQGdAlIaUUpRoFU3oA2gWR0CeXZhWo3rEdX2UKGgGaAloD0MIvCNjtXlJY0CUhpRSlGgVTegDaBZHQJ5fglpoK2N1fZQoaAZoCWgPQwjwvioXKu9kQJSGlFKUaBVN6ANoFkdAnmgNzS1E3XV9lChoBmgJaA9DCL8s7dTcKWBAlIaUUpRoFU3oA2gWR0CebR94u9OAdX2UKGgGaAloD0MIYMsr19uGcUCUhpRSlGgVTbQBaBZHQJ5tv4ubqhV1fZQoaAZoCWgPQwjJAbuavLZuQJSGlFKUaBVNzwFoFkdAnm3Occ2itnV9lChoBmgJaA9DCLyS5Lm+ZGZAlIaUUpRoFU3oA2gWR0CecLvAoG6gdX2UKGgGaAloD0MIsRafAmCTaECUhpRSlGgVTegDaBZHQJ5x6Qp4KQd1fZQoaAZoCWgPQwhyw++mG6hxQJSGlFKUaBVNRgJoFkdAnnrIPXkHU3V9lChoBmgJaA9DCGGNs+kIvWFAlIaUUpRoFU3oA2gWR0Cee9NJvo/zdX2UKGgGaAloD0MI3gVKCqzvY0CUhpRSlGgVTegDaBZHQJ58LztkWh11fZQoaAZoCWgPQwg7Vik9U+VrQJSGlFKUaBVNVgNoFkdAnoYIz7/GVHV9lChoBmgJaA9DCAe2SrA4Y2dAlIaUUpRoFU3oA2gWR0CekOI8QqZudX2UKGgGaAloD0MIEMtmDsnJYkCUhpRSlGgVTegDaBZHQJ6TmagElmh1fZQoaAZoCWgPQwjgDz//PUhfQJSGlFKUaBVN6ANoFkdAnpZm0mdAgXV9lChoBmgJaA9DCAU1fAvrIWdAlIaUUpRoFU3oA2gWR0Cel0H9FWn1dX2UKGgGaAloD0MIfLWjOEdsXUCUhpRSlGgVTegDaBZHQJ6X9qqOtGN1fZQoaAZoCWgPQwhdN6W81h1kQJSGlFKUaBVN6ANoFkdAnppkLYwqRXV9lChoBmgJaA9DCOHtQQhIJGhAlIaUUpRoFU3oA2gWR0Ceo/3pOerddX2UKGgGaAloD0MIdcsO8Q88ZkCUhpRSlGgVTegDaBZHQJ6o/cWTHKh1fZQoaAZoCWgPQwjJrx9ig3plQJSGlFKUaBVN6ANoFkdAnqmIqbz9THV9lChoBmgJaA9DCCgrhquDpWFAlIaUUpRoFU3oA2gWR0CeqZWGATZhdX2UKGgGaAloD0MIRmCsb2DJZ0CUhpRSlGgVTegDaBZHQJ6scis4ku91fZQoaAZoCWgPQwgCfo0kwVVlQJSGlFKUaBVN6ANoFkdAnq22SyMUAXV9lChoBmgJaA9DCBMOvcXDaWRAlIaUUpRoFU3oA2gWR0Cet2C2MKkVdX2UKGgGaAloD0MIYHZPHpbnZUCUhpRSlGgVTegDaBZHQJ64aS9ugpV1fZQoaAZoCWgPQwh4feasT5liQJSGlFKUaBVN6ANoFkdAnrjTWGyooHV9lChoBmgJaA9DCEuQEVDhsGdAlIaUUpRoFU3oA2gWR0Cewz/LTx5LdX2UKGgGaAloD0MICCEgX0JpcECUhpRSlGgVTWABaBZHQJ7F1shxHXp1fZQoaAZoCWgPQwgJpppZS3BsQJSGlFKUaBVNQgNoFkdAnsj2VzIV/XV9lChoBmgJaA9DCKK2DaOgNGVAlIaUUpRoFU3oA2gWR0CfBS4RmK64dX2UKGgGaAloD0MIZkzBGic+c0CUhpRSlGgVTUYCaBZHQJ8GscwQDmt1fZQoaAZoCWgPQwjjb3uCxH5lQJSGlFKUaBVN6ANoFkdAnweBPXTVlXV9lChoBmgJaA9DCB2s/3MYWWxAlIaUUpRoFU1WAmgWR0CfB45E+gUUdX2UKGgGaAloD0MIsd8T61QfbUCUhpRSlGgVTWkBaBZHQJ8JBHoX9BN1fZQoaAZoCWgPQwiZmgRvCIVwQJSGlFKUaBVNTAJoFkdAnwnGq5sj3XV9lChoBmgJaA9DCJkqGJXU3mNAlIaUUpRoFU3oA2gWR0CfCpRf4REndX2UKGgGaAloD0MIZTVdT3RtZkCUhpRSlGgVTegDaBZHQJ8LJwPy08h1fZQoaAZoCWgPQwj/sKVHUxVvQJSGlFKUaBVNDgNoFkdAnwuxCUornXV9lChoBmgJaA9DCMLB3sQQQm1AlIaUUpRoFU3cA2gWR0CfDJLFGXoldX2UKGgGaAloD0MIOsssQrH4cECUhpRSlGgVTWABaBZHQJ8PJ7sv7Fd1fZQoaAZoCWgPQwgvo1huaY9yQJSGlFKUaBVNrAJoFkdAnxYqFVT723V9lChoBmgJaA9DCAtD5PR1UGNAlIaUUpRoFU3oA2gWR0CfGX/BnBcidX2UKGgGaAloD0MIgGYQH1gJb0CUhpRSlGgVTSEBaBZHQJ8eV9a2Wpt1fZQoaAZoCWgPQwha9bnaCkpuQJSGlFKUaBVNVgJoFkdAnySBdMTN+3V9lChoBmgJaA9DCBB39SqyInFAlIaUUpRoFU0aAmgWR0CfJt6/qPfbdX2UKGgGaAloD0MImiUBauq5cUCUhpRSlGgVTaYCaBZHQJ8nIvysjml1fZQoaAZoCWgPQwioqWVrfYRxQJSGlFKUaBVNLwJoFkdAnydKH0se4nV9lChoBmgJaA9DCA5KmGn7eGJAlIaUUpRoFU3oA2gWR0CfKKomG/N8dX2UKGgGaAloD0MIxvgwe9l5cECUhpRSlGgVTTECaBZHQJ8pLCJoCdV1fZQoaAZoCWgPQwhGQfD49hhtQJSGlFKUaBVNtQJoFkdAny4lgQYk3XV9lChoBmgJaA9DCF3AywwbJGVAlIaUUpRoFU3oA2gWR0CfMPC/XXiBdX2UKGgGaAloD0MInYAmwoZnaECUhpRSlGgVTegDaBZHQJ83BGb1AZ91fZQoaAZoCWgPQwg7qS9Lu1ZyQJSGlFKUaBVNOAFoFkdAnzvpp35eq3V9lChoBmgJaA9DCNSa5h0nZ2tAlIaUUpRoFU2bA2gWR0CfPJJ9iMHbdX2UKGgGaAloD0MItp4hHDMuckCUhpRSlGgVTTQCaBZHQJ883o6jnFJ1fZQoaAZoCWgPQwhw7xr0pb1eQJSGlFKUaBVN6ANoFkdAnz9mTot+TnV9lChoBmgJaA9DCE4n2eryimFAlIaUUpRoFU3oA2gWR0CfP3FSKm8/dX2UKGgGaAloD0MI4zYawFsJY0CUhpRSlGgVTegDaBZHQJ9BYnCwbER1fZQoaAZoCWgPQwhnYORljTxzQJSGlFKUaBVNDQJoFkdAn0ROHBUJfXV9lChoBmgJaA9DCJQRF4CG/XBAlIaUUpRoFU3WAWgWR0CfRgULDye7dX2UKGgGaAloD0MIio7k8p9qcECUhpRSlGgVTckCaBZHQJ9H/4N7SiN1fZQoaAZoCWgPQwhckC3L1wpwQJSGlFKUaBVNsAJoFkdAn09f4ZdfLXV9lChoBmgJaA9DCAVqMXgYpGNAlIaUUpRoFU3oA2gWR0CfT/SflIVedX2UKGgGaAloD0MIKa4q+y7IcECUhpRSlGgVTV0BaBZHQJ9QzvPTodN1fZQoaAZoCWgPQwi9cOfCSKtvQJSGlFKUaBVNjwFoFkdAn1EO+IuXeHV9lChoBmgJaA9DCPyrx30rQHJAlIaUUpRoFU0sAWgWR0CfVdPBi1ArdX2UKGgGaAloD0MIP/89eK3UcUCUhpRSlGgVTcABaBZHQJ9WFw2l2vB1fZQoaAZoCWgPQwh7ouvCT21wQJSGlFKUaBVNdgFoFkdAn1gvxlQMyHV9lChoBmgJaA9DCJQw0/ZvUXJAlIaUUpRoFU0BA2gWR0CfWtHGjsUqdX2UKGgGaAloD0MIpz6QvPNnY0CUhpRSlGgVTegDaBZHQJ9hYDEFW4p1fZQoaAZoCWgPQwholC79S5VnQJSGlFKUaBVN6ANoFkdAn2PIEGJN03V9lChoBmgJaA9DCDBkdatn729AlIaUUpRoFU1BAWgWR0Cfau6P8yeqdX2UKGgGaAloD0MI7gT7r3N0YECUhpRSlGgVTegDaBZHQJ9s8hPj4pN1fZQoaAZoCWgPQwjvdOeJZ1doQJSGlFKUaBVN6ANoFkdAn3LWWhRIjHV9lChoBmgJaA9DCEolPKHXsmRAlIaUUpRoFU3oA2gWR0CfdxGff4yodWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "n_steps": 2048, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022", "Python": "3.8.10", "Stable-Baselines3": "1.7.0", "PyTorch": "1.13.1+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
lunar_lander_ppo_v1.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f302a0cef5838594f7005d3b870ebe4fc5ae77392ffa6d8d67133ac5cb9fb76
|
3 |
+
size 147426
|
lunar_lander_ppo_v1/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.7.0
|
lunar_lander_ppo_v1/data
ADDED
@@ -0,0 +1,95 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7fd01d261f70>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fd01d265040>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fd01d2650d0>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fd01d265160>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7fd01d2651f0>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7fd01d265280>",
|
13 |
+
"extract_features": "<function ActorCriticPolicy.extract_features at 0x7fd01d265310>",
|
14 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fd01d2653a0>",
|
15 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7fd01d265430>",
|
16 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fd01d2654c0>",
|
17 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fd01d265550>",
|
18 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7fd01d2655e0>",
|
19 |
+
"__abstractmethods__": "frozenset()",
|
20 |
+
"_abc_impl": "<_abc_data object at 0x7fd01d25f660>"
|
21 |
+
},
|
22 |
+
"verbose": 1,
|
23 |
+
"policy_kwargs": {},
|
24 |
+
"observation_space": {
|
25 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
26 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
27 |
+
"dtype": "float32",
|
28 |
+
"_shape": [
|
29 |
+
8
|
30 |
+
],
|
31 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
32 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
33 |
+
"bounded_below": "[False False False False False False False False]",
|
34 |
+
"bounded_above": "[False False False False False False False False]",
|
35 |
+
"_np_random": null
|
36 |
+
},
|
37 |
+
"action_space": {
|
38 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
39 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
40 |
+
"n": 4,
|
41 |
+
"_shape": [],
|
42 |
+
"dtype": "int64",
|
43 |
+
"_np_random": null
|
44 |
+
},
|
45 |
+
"n_envs": 16,
|
46 |
+
"num_timesteps": 1015808,
|
47 |
+
"_total_timesteps": 1000000,
|
48 |
+
"_num_timesteps_at_start": 0,
|
49 |
+
"seed": null,
|
50 |
+
"action_noise": null,
|
51 |
+
"start_time": 1676417846475543700,
|
52 |
+
"learning_rate": 0.0003,
|
53 |
+
"tensorboard_log": null,
|
54 |
+
"lr_schedule": {
|
55 |
+
":type:": "<class 'function'>",
|
56 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
57 |
+
},
|
58 |
+
"_last_obs": {
|
59 |
+
":type:": "<class 'numpy.ndarray'>",
|
60 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAJphmDzhUuE5ijXONqQrUzKcvZ24skT/tQAAgD8AAIA/M9tbu/ZMcbo1BxO0MoBVsOfsQ7pKyKEzAACAPwAAgD+amOQ8CQFbPnT2E7zGqTe+1gWmvHIigz0AAAAAAAAAABOXVb5OPtu8ZtklvpyhsLx8YE8+lqiHPQAAgD8AAIA/ZqZJO8OBa7o+fa25xFWPtEQOvrksyMc4AACAPwAAgD+aB/u8ce1zuYfkNbjvFwSzUP4xuYoWUzcAAIA/AACAP2aZS70JTlQ/bGvCPBZhx741c7q92SycPQAAAAAAAAAAADuGPOHMqLquH0a61TAatssJhbpogGM5AACAPwAAgD9mNLM9KYxXulYAwzoUnlU2It+aOyPS4LkAAAAAAACAPzOCBz355VI+0hMUvs2qKb5tmhK9S1R+PAAAAAAAAAAAs74hPT06CLnM+ZA5hoW8NGFuCblGaqq4AACAPwAAgD+aVGw9rtuMupDrJDjvmBAzxsACu8yGP7cAAIA/AACAP5oh+Ls4drU/bVtEvyuWmT6K3w88R+kxPgAAAAAAAAAAs8dtPa5nxLjUTjC7wGmBtulzKbmG2E46AACAPwAAgD+NE+E9H9WmuenGHTjm2CAzBH37uh7tOLcAAIA/AACAP2YI8rz2QDW6bjvJum/SHLVutwG7e4rlOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
61 |
+
},
|
62 |
+
"_last_episode_starts": {
|
63 |
+
":type:": "<class 'numpy.ndarray'>",
|
64 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAEAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
65 |
+
},
|
66 |
+
"_last_original_obs": null,
|
67 |
+
"_episode_num": 0,
|
68 |
+
"use_sde": false,
|
69 |
+
"sde_sample_freq": -1,
|
70 |
+
"_current_progress_remaining": -0.015808000000000044,
|
71 |
+
"ep_info_buffer": {
|
72 |
+
":type:": "<class 'collections.deque'>",
|
73 |
+
":serialized:": "gAWVgRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIYaku4GV7ZUCUhpRSlIwBbJRN6AOMAXSUR0Cd5f1mrbQDdX2UKGgGaAloD0MIm6xRD9EzYkCUhpRSlGgVTegDaBZHQJ3muvZAY511fZQoaAZoCWgPQwgJNNjU+bZmQJSGlFKUaBVN6ANoFkdAnejgla8pTnV9lChoBmgJaA9DCJi9bDtt92JAlIaUUpRoFU3oA2gWR0Cd607oB7u2dX2UKGgGaAloD0MICVBTy9ZZZECUhpRSlGgVTegDaBZHQJ3sE5hjOLR1fZQoaAZoCWgPQwitTzkmizNjQJSGlFKUaBVN6ANoFkdAnexJfx+a0HV9lChoBmgJaA9DCHptNlaiknBAlIaUUpRoFU3fA2gWR0Cd7FYzSCvpdX2UKGgGaAloD0MISmJJuXuGZUCUhpRSlGgVTegDaBZHQJ3sqVX3g1p1fZQoaAZoCWgPQwgK2A5G7D9nQJSGlFKUaBVN6ANoFkdAne6rEtNBW3V9lChoBmgJaA9DCGueI/JdCWNAlIaUUpRoFU3oA2gWR0Cd9xby6MBIdX2UKGgGaAloD0MIBKp/EEkaYkCUhpRSlGgVTegDaBZHQJ38Ct5le4V1fZQoaAZoCWgPQwgWodgKGollQJSGlFKUaBVN6ANoFkdAnf/ddqtYCHV9lChoBmgJaA9DCBqIZTMHp2NAlIaUUpRoFU3oA2gWR0CeAS4vvjOtdX2UKGgGaAloD0MIKQmJtI3oXUCUhpRSlGgVTegDaBZHQJ4NPGm1pkB1fZQoaAZoCWgPQwj2mEhptpFvQJSGlFKUaBVNUwJoFkdAng4rpA2Q4nV9lChoBmgJaA9DCMLZrWWy92NAlIaUUpRoFU3oA2gWR0CeDo4XXRPXdX2UKGgGaAloD0MIyR6hZkidZkCUhpRSlGgVTegDaBZHQJ5Wwd2gWad1fZQoaAZoCWgPQwjEz38P3vlyQJSGlFKUaBVNJgFoFkdAnlcFPWQOnXV9lChoBmgJaA9DCGfV52qrRmRAlIaUUpRoFU3oA2gWR0CeV3eyiVSodX2UKGgGaAloD0MIWvYksDmdY0CUhpRSlGgVTegDaBZHQJ5YFRMvh611fZQoaAZoCWgPQwgy5Nh6hkZxQJSGlFKUaBVN5ANoFkdAnlnaLn9vTHV9lChoBmgJaA9DCNEgBU+hu2BAlIaUUpRoFU3oA2gWR0CeXFSlFc6edX2UKGgGaAloD0MI1xh0Quj+ZkCUhpRSlGgVTegDaBZHQJ5dE8hcJMR1fZQoaAZoCWgPQwi5HK9AdI9hQJSGlFKUaBVN6ANoFkdAnl0+cH4XXXV9lChoBmgJaA9DCL8n1qnyQGdAlIaUUpRoFU3oA2gWR0CeXZhWo3rEdX2UKGgGaAloD0MIvCNjtXlJY0CUhpRSlGgVTegDaBZHQJ5fglpoK2N1fZQoaAZoCWgPQwjwvioXKu9kQJSGlFKUaBVN6ANoFkdAnmgNzS1E3XV9lChoBmgJaA9DCL8s7dTcKWBAlIaUUpRoFU3oA2gWR0CebR94u9OAdX2UKGgGaAloD0MIYMsr19uGcUCUhpRSlGgVTbQBaBZHQJ5tv4ubqhV1fZQoaAZoCWgPQwjJAbuavLZuQJSGlFKUaBVNzwFoFkdAnm3Occ2itnV9lChoBmgJaA9DCLyS5Lm+ZGZAlIaUUpRoFU3oA2gWR0CecLvAoG6gdX2UKGgGaAloD0MIsRafAmCTaECUhpRSlGgVTegDaBZHQJ5x6Qp4KQd1fZQoaAZoCWgPQwhyw++mG6hxQJSGlFKUaBVNRgJoFkdAnnrIPXkHU3V9lChoBmgJaA9DCGGNs+kIvWFAlIaUUpRoFU3oA2gWR0Cee9NJvo/zdX2UKGgGaAloD0MI3gVKCqzvY0CUhpRSlGgVTegDaBZHQJ58LztkWh11fZQoaAZoCWgPQwg7Vik9U+VrQJSGlFKUaBVNVgNoFkdAnoYIz7/GVHV9lChoBmgJaA9DCAe2SrA4Y2dAlIaUUpRoFU3oA2gWR0CekOI8QqZudX2UKGgGaAloD0MIEMtmDsnJYkCUhpRSlGgVTegDaBZHQJ6TmagElmh1fZQoaAZoCWgPQwjgDz//PUhfQJSGlFKUaBVN6ANoFkdAnpZm0mdAgXV9lChoBmgJaA9DCAU1fAvrIWdAlIaUUpRoFU3oA2gWR0Cel0H9FWn1dX2UKGgGaAloD0MIfLWjOEdsXUCUhpRSlGgVTegDaBZHQJ6X9qqOtGN1fZQoaAZoCWgPQwhdN6W81h1kQJSGlFKUaBVN6ANoFkdAnppkLYwqRXV9lChoBmgJaA9DCOHtQQhIJGhAlIaUUpRoFU3oA2gWR0Ceo/3pOerddX2UKGgGaAloD0MIdcsO8Q88ZkCUhpRSlGgVTegDaBZHQJ6o/cWTHKh1fZQoaAZoCWgPQwjJrx9ig3plQJSGlFKUaBVN6ANoFkdAnqmIqbz9THV9lChoBmgJaA9DCCgrhquDpWFAlIaUUpRoFU3oA2gWR0CeqZWGATZhdX2UKGgGaAloD0MIRmCsb2DJZ0CUhpRSlGgVTegDaBZHQJ6scis4ku91fZQoaAZoCWgPQwgCfo0kwVVlQJSGlFKUaBVN6ANoFkdAnq22SyMUAXV9lChoBmgJaA9DCBMOvcXDaWRAlIaUUpRoFU3oA2gWR0Cet2C2MKkVdX2UKGgGaAloD0MIYHZPHpbnZUCUhpRSlGgVTegDaBZHQJ64aS9ugpV1fZQoaAZoCWgPQwh4feasT5liQJSGlFKUaBVN6ANoFkdAnrjTWGyooHV9lChoBmgJaA9DCEuQEVDhsGdAlIaUUpRoFU3oA2gWR0Cewz/LTx5LdX2UKGgGaAloD0MICCEgX0JpcECUhpRSlGgVTWABaBZHQJ7F1shxHXp1fZQoaAZoCWgPQwgJpppZS3BsQJSGlFKUaBVNQgNoFkdAnsj2VzIV/XV9lChoBmgJaA9DCKK2DaOgNGVAlIaUUpRoFU3oA2gWR0CfBS4RmK64dX2UKGgGaAloD0MIZkzBGic+c0CUhpRSlGgVTUYCaBZHQJ8GscwQDmt1fZQoaAZoCWgPQwjjb3uCxH5lQJSGlFKUaBVN6ANoFkdAnweBPXTVlXV9lChoBmgJaA9DCB2s/3MYWWxAlIaUUpRoFU1WAmgWR0CfB45E+gUUdX2UKGgGaAloD0MIsd8T61QfbUCUhpRSlGgVTWkBaBZHQJ8JBHoX9BN1fZQoaAZoCWgPQwiZmgRvCIVwQJSGlFKUaBVNTAJoFkdAnwnGq5sj3XV9lChoBmgJaA9DCJkqGJXU3mNAlIaUUpRoFU3oA2gWR0CfCpRf4REndX2UKGgGaAloD0MIZTVdT3RtZkCUhpRSlGgVTegDaBZHQJ8LJwPy08h1fZQoaAZoCWgPQwj/sKVHUxVvQJSGlFKUaBVNDgNoFkdAnwuxCUornXV9lChoBmgJaA9DCMLB3sQQQm1AlIaUUpRoFU3cA2gWR0CfDJLFGXoldX2UKGgGaAloD0MIOsssQrH4cECUhpRSlGgVTWABaBZHQJ8PJ7sv7Fd1fZQoaAZoCWgPQwgvo1huaY9yQJSGlFKUaBVNrAJoFkdAnxYqFVT723V9lChoBmgJaA9DCAtD5PR1UGNAlIaUUpRoFU3oA2gWR0CfGX/BnBcidX2UKGgGaAloD0MIgGYQH1gJb0CUhpRSlGgVTSEBaBZHQJ8eV9a2Wpt1fZQoaAZoCWgPQwha9bnaCkpuQJSGlFKUaBVNVgJoFkdAnySBdMTN+3V9lChoBmgJaA9DCBB39SqyInFAlIaUUpRoFU0aAmgWR0CfJt6/qPfbdX2UKGgGaAloD0MImiUBauq5cUCUhpRSlGgVTaYCaBZHQJ8nIvysjml1fZQoaAZoCWgPQwioqWVrfYRxQJSGlFKUaBVNLwJoFkdAnydKH0se4nV9lChoBmgJaA9DCA5KmGn7eGJAlIaUUpRoFU3oA2gWR0CfKKomG/N8dX2UKGgGaAloD0MIxvgwe9l5cECUhpRSlGgVTTECaBZHQJ8pLCJoCdV1fZQoaAZoCWgPQwhGQfD49hhtQJSGlFKUaBVNtQJoFkdAny4lgQYk3XV9lChoBmgJaA9DCF3AywwbJGVAlIaUUpRoFU3oA2gWR0CfMPC/XXiBdX2UKGgGaAloD0MInYAmwoZnaECUhpRSlGgVTegDaBZHQJ83BGb1AZ91fZQoaAZoCWgPQwg7qS9Lu1ZyQJSGlFKUaBVNOAFoFkdAnzvpp35eq3V9lChoBmgJaA9DCNSa5h0nZ2tAlIaUUpRoFU2bA2gWR0CfPJJ9iMHbdX2UKGgGaAloD0MItp4hHDMuckCUhpRSlGgVTTQCaBZHQJ883o6jnFJ1fZQoaAZoCWgPQwhw7xr0pb1eQJSGlFKUaBVN6ANoFkdAnz9mTot+TnV9lChoBmgJaA9DCE4n2eryimFAlIaUUpRoFU3oA2gWR0CfP3FSKm8/dX2UKGgGaAloD0MI4zYawFsJY0CUhpRSlGgVTegDaBZHQJ9BYnCwbER1fZQoaAZoCWgPQwhnYORljTxzQJSGlFKUaBVNDQJoFkdAn0ROHBUJfXV9lChoBmgJaA9DCJQRF4CG/XBAlIaUUpRoFU3WAWgWR0CfRgULDye7dX2UKGgGaAloD0MIio7k8p9qcECUhpRSlGgVTckCaBZHQJ9H/4N7SiN1fZQoaAZoCWgPQwhckC3L1wpwQJSGlFKUaBVNsAJoFkdAn09f4ZdfLXV9lChoBmgJaA9DCAVqMXgYpGNAlIaUUpRoFU3oA2gWR0CfT/SflIVedX2UKGgGaAloD0MIKa4q+y7IcECUhpRSlGgVTV0BaBZHQJ9QzvPTodN1fZQoaAZoCWgPQwi9cOfCSKtvQJSGlFKUaBVNjwFoFkdAn1EO+IuXeHV9lChoBmgJaA9DCPyrx30rQHJAlIaUUpRoFU0sAWgWR0CfVdPBi1ArdX2UKGgGaAloD0MIP/89eK3UcUCUhpRSlGgVTcABaBZHQJ9WFw2l2vB1fZQoaAZoCWgPQwh7ouvCT21wQJSGlFKUaBVNdgFoFkdAn1gvxlQMyHV9lChoBmgJaA9DCJQw0/ZvUXJAlIaUUpRoFU0BA2gWR0CfWtHGjsUqdX2UKGgGaAloD0MIpz6QvPNnY0CUhpRSlGgVTegDaBZHQJ9hYDEFW4p1fZQoaAZoCWgPQwholC79S5VnQJSGlFKUaBVN6ANoFkdAn2PIEGJN03V9lChoBmgJaA9DCDBkdatn729AlIaUUpRoFU1BAWgWR0Cfau6P8yeqdX2UKGgGaAloD0MI7gT7r3N0YECUhpRSlGgVTegDaBZHQJ9s8hPj4pN1fZQoaAZoCWgPQwjvdOeJZ1doQJSGlFKUaBVN6ANoFkdAn3LWWhRIjHV9lChoBmgJaA9DCEolPKHXsmRAlIaUUpRoFU3oA2gWR0CfdxGff4yodWUu"
|
74 |
+
},
|
75 |
+
"ep_success_buffer": {
|
76 |
+
":type:": "<class 'collections.deque'>",
|
77 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
78 |
+
},
|
79 |
+
"_n_updates": 310,
|
80 |
+
"n_steps": 2048,
|
81 |
+
"gamma": 0.999,
|
82 |
+
"gae_lambda": 0.98,
|
83 |
+
"ent_coef": 0.01,
|
84 |
+
"vf_coef": 0.5,
|
85 |
+
"max_grad_norm": 0.5,
|
86 |
+
"batch_size": 128,
|
87 |
+
"n_epochs": 10,
|
88 |
+
"clip_range": {
|
89 |
+
":type:": "<class 'function'>",
|
90 |
+
":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
|
91 |
+
},
|
92 |
+
"clip_range_vf": null,
|
93 |
+
"normalize_advantage": true,
|
94 |
+
"target_kl": null
|
95 |
+
}
|
lunar_lander_ppo_v1/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2efd2bdf6a73e2390a36bf87f46871a11d70cf7344cdfbd5d5de059b3cb1c3d3
|
3 |
+
size 87929
|
lunar_lander_ppo_v1/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:65bb0cf2ac3c86ac9546f1dd0ff4e1f7e666ff89222fa3186c9e88af83c1e68c
|
3 |
+
size 43393
|
lunar_lander_ppo_v1/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
lunar_lander_ppo_v1/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Linux-5.10.147+-x86_64-with-glibc2.29 # 1 SMP Sat Dec 10 16:00:40 UTC 2022
|
2 |
+
- Python: 3.8.10
|
3 |
+
- Stable-Baselines3: 1.7.0
|
4 |
+
- PyTorch: 1.13.1+cu116
|
5 |
+
- GPU Enabled: True
|
6 |
+
- Numpy: 1.21.6
|
7 |
+
- Gym: 0.21.0
|
replay.mp4
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3e3e2abc6f474eb2e047a384a3851e387e6337a5e2bcce01f8942e838929d563
|
3 |
+
size 214809
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward":
|
|
|
1 |
+
{"mean_reward": 269.56239525812606, "std_reward": 26.616304588459712, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-02-15T00:02:47.341177"}
|