sadhaklal commited on
Commit
681f9b2
1 Parent(s): 3bee4c5

updated README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -3
README.md CHANGED
@@ -2,8 +2,82 @@
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
 
 
 
 
 
 
5
  ---
6
 
7
- This model has been pushed to the Hub using the [PytorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration:
8
- - Library: [More Information Needed]
9
- - Docs: [More Information Needed]
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  tags:
3
  - model_hub_mixin
4
  - pytorch_model_hub_mixin
5
+ pipeline_tag: tabular-regression
6
+ library_name: pytorch
7
+ datasets:
8
+ - gvlassis/california_housing
9
+ metrics:
10
+ - rmse
11
  ---
12
 
13
+ # wide-and-deep-net-california-housing
14
+
15
+ A wide & deep neural network trained on the California Housing dataset.
16
+
17
+ It takes eight inputs: `'MedInc'`, `'HouseAge'`, `'AveRooms'`, `'AveBedrms'`, `'Population'`, `'AveOccup'`, `'Latitude'` and `'Longitude'`. It predicts `'MedHouseVal'`.
18
+
19
+ It is a PyTorch adaptation of the TensorFlow model in Chapter 10 of Aurelien Geron's book 'Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow'.
20
+
21
+ ![](https://raw.githubusercontent.com/sambitmukherjee/handson-ml3-pytorch/main/chapter10/Figure_10-13.png)
22
+
23
+ Code: https://github.com/sambitmukherjee/handson-ml3-pytorch/blob/main/chapter10/wide_and_deep_net_california_housing.ipynb
24
+
25
+ Experiment tracking: https://wandb.ai/sadhaklal/wide-and-deep-net-california-housing
26
+
27
+ ## Usage
28
+
29
+ ```
30
+ from sklearn.datasets import fetch_california_housing
31
+
32
+ housing = fetch_california_housing(as_frame=True)
33
+
34
+ from sklearn.model_selection import train_test_split
35
+
36
+ X_train_full, X_test, y_train_full, y_test = train_test_split(housing['data'], housing['target'], test_size=0.25, random_state=42)
37
+ X_train, X_valid, y_train, y_valid = train_test_split(X_train_full, y_train_full, test_size=0.25, random_state=42)
38
+
39
+ X_means, X_stds = X_train.mean(axis=0), X_train.std(axis=0)
40
+ X_train = (X_train - X_means) / X_stds
41
+ X_valid = (X_valid - X_means) / X_stds
42
+ X_test = (X_test - X_means) / X_stds
43
+
44
+ import torch
45
+
46
+ device = torch.device("cpu")
47
+
48
+ import torch.nn as nn
49
+ from huggingface_hub import PyTorchModelHubMixin
50
+
51
+ class WideAndDeepNet(nn.Module, PyTorchModelHubMixin):
52
+ def __init__(self):
53
+ super().__init__()
54
+ self.hidden1 = nn.Linear(8, 30)
55
+ self.hidden2 = nn.Linear(30, 30)
56
+ self.output = nn.Linear(38, 1)
57
+
58
+ def forward(self, x):
59
+ act = torch.relu(self.hidden1(x))
60
+ act = torch.relu(self.hidden2(act))
61
+ concat = torch.cat([x, act], axis=1)
62
+ return self.output(concat)
63
+
64
+ model = WideAndDeepNet.from_pretrained("sadhaklal/wide-and-deep-net-california-housing")
65
+ model.to(device)
66
+ model.eval()
67
+
68
+ # Let's predict on 3 unseen examples from the test set:
69
+ print(f"Ground truth housing prices: {y_test.values[:3]}")
70
+ x_new = torch.tensor(X_test.values[:3], dtype=torch.float32)
71
+ x_new = x_new.to(device)
72
+ with torch.no_grad():
73
+ preds = model(x_new)
74
+ print(f"Predicted housing prices: {preds.squeeze()}")
75
+ ```
76
+
77
+ ## Metric
78
+
79
+ RMSE on the test set: 0.546
80
+
81
+ ---
82
+
83
+ This model has been pushed to the Hub using the [PyTorchModelHubMixin](https://huggingface.co/docs/huggingface_hub/package_reference/mixins#huggingface_hub.PyTorchModelHubMixin) integration.