sade-adrien commited on
Commit
02d1431
1 Parent(s): 85fa7e4

Model save

Browse files
Files changed (1) hide show
  1. README.md +70 -0
README.md ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: mistralai/Mistral-7B-Instruct-v0.1
4
+ tags:
5
+ - generated_from_trainer
6
+ model-index:
7
+ - name: Mistral-7B-Instruct-v0.1-LC16k-PI
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # Mistral-7B-Instruct-v0.1-LC16k-PI
15
+
16
+ This model is a fine-tuned version of [mistralai/Mistral-7B-Instruct-v0.1](https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.1) on an unknown dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 1.6455
19
+
20
+ ## Model description
21
+
22
+ More information needed
23
+
24
+ ## Intended uses & limitations
25
+
26
+ More information needed
27
+
28
+ ## Training and evaluation data
29
+
30
+ More information needed
31
+
32
+ ## Training procedure
33
+
34
+ ### Training hyperparameters
35
+
36
+ The following hyperparameters were used during training:
37
+ - learning_rate: 0.0001
38
+ - train_batch_size: 1
39
+ - eval_batch_size: 1
40
+ - seed: 42
41
+ - gradient_accumulation_steps: 32
42
+ - total_train_batch_size: 32
43
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
44
+ - lr_scheduler_type: linear
45
+ - lr_scheduler_warmup_steps: 30
46
+ - training_steps: 1000
47
+ - mixed_precision_training: Native AMP
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss |
52
+ |:-------------:|:-----:|:----:|:---------------:|
53
+ | 1.6742 | 0.12 | 100 | 1.6880 |
54
+ | 1.6683 | 0.24 | 200 | 1.6711 |
55
+ | 1.7301 | 0.36 | 300 | 1.6636 |
56
+ | 1.6867 | 0.47 | 400 | 1.6588 |
57
+ | 1.4718 | 0.59 | 500 | 1.6557 |
58
+ | 1.6843 | 0.71 | 600 | 1.6519 |
59
+ | 1.5966 | 0.83 | 700 | 1.6492 |
60
+ | 1.9016 | 0.95 | 800 | 1.6472 |
61
+ | 1.7488 | 1.07 | 900 | 1.6461 |
62
+ | 1.5596 | 1.19 | 1000 | 1.6455 |
63
+
64
+
65
+ ### Framework versions
66
+
67
+ - Transformers 4.35.2
68
+ - Pytorch 2.0.0+cu117
69
+ - Datasets 2.14.6
70
+ - Tokenizers 0.14.1