Upload translate_mine.py with huggingface_hub
Browse files- translate_mine.py +144 -0
translate_mine.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright (c) 2019-present, Facebook, Inc.
|
2 |
+
# All rights reserved.
|
3 |
+
#
|
4 |
+
# This source code is licensed under the license found in the
|
5 |
+
# LICENSE file in the root directory of this source tree.
|
6 |
+
#
|
7 |
+
# Translate sentences from the input stream.
|
8 |
+
# The model will be faster is sentences are sorted by length.
|
9 |
+
# Input sentences must have the same tokenization and BPE codes than the ones used in the model.
|
10 |
+
#
|
11 |
+
# Usage:
|
12 |
+
# cat source_sentences.bpe | \
|
13 |
+
# python translate.py --exp_name translate \
|
14 |
+
# --src_lang en --tgt_lang fr \
|
15 |
+
# --model_path trained_model.pth --output_path output
|
16 |
+
#
|
17 |
+
|
18 |
+
import os
|
19 |
+
import io
|
20 |
+
import sys
|
21 |
+
import argparse
|
22 |
+
import torch
|
23 |
+
|
24 |
+
from src.utils import AttrDict
|
25 |
+
from src.utils import bool_flag, initialize_exp
|
26 |
+
from src.data.dictionary import Dictionary
|
27 |
+
from src.model.transformer import TransformerModel
|
28 |
+
|
29 |
+
|
30 |
+
def get_parser():
|
31 |
+
"""
|
32 |
+
Generate a parameters parser.
|
33 |
+
"""
|
34 |
+
# parse parameters
|
35 |
+
parser = argparse.ArgumentParser(description="Translate sentences")
|
36 |
+
|
37 |
+
# main parameters
|
38 |
+
parser.add_argument("--dump_path", type=str, default="./dumped/", help="Experiment dump path")
|
39 |
+
parser.add_argument("--exp_name", type=str, default="", help="Experiment name")
|
40 |
+
parser.add_argument("--exp_id", type=str, default="", help="Experiment ID")
|
41 |
+
parser.add_argument("--batch_size", type=int, default=32, help="Number of sentences per batch")
|
42 |
+
|
43 |
+
# model / output paths
|
44 |
+
parser.add_argument("--model_path", type=str, default="", help="Model path")
|
45 |
+
parser.add_argument("--output_path", type=str, default="", help="Output path")
|
46 |
+
|
47 |
+
# parser.add_argument("--max_vocab", type=int, default=-1, help="Maximum vocabulary size (-1 to disable)")
|
48 |
+
# parser.add_argument("--min_count", type=int, default=0, help="Minimum vocabulary count")
|
49 |
+
|
50 |
+
# source language / target language
|
51 |
+
parser.add_argument("--src_lang", type=str, default="", help="Source language")
|
52 |
+
parser.add_argument("--tgt_lang", type=str, default="", help="Target language")
|
53 |
+
|
54 |
+
return parser
|
55 |
+
|
56 |
+
|
57 |
+
def main(params):
|
58 |
+
params.device = torch.device('cuda')
|
59 |
+
params.eval_only = True
|
60 |
+
params.log_file_prefix = False
|
61 |
+
|
62 |
+
# initialize the experiment
|
63 |
+
logger = initialize_exp(params)
|
64 |
+
|
65 |
+
# generate parser / parse parameters
|
66 |
+
parser = get_parser()
|
67 |
+
params = parser.parse_args()
|
68 |
+
reloaded = torch.load(params.model_path)
|
69 |
+
model_params = AttrDict(reloaded['params'])
|
70 |
+
logger.info("Supported languages: %s" % ", ".join(model_params.lang2id.keys()))
|
71 |
+
|
72 |
+
# update dictionary parameters
|
73 |
+
for name in ['n_words', 'bos_index', 'eos_index', 'pad_index', 'unk_index', 'mask_index']:
|
74 |
+
setattr(params, name, getattr(model_params, name))
|
75 |
+
|
76 |
+
# build dictionary / build encoder / build decoder / reload weights
|
77 |
+
dico = Dictionary(reloaded['dico_id2word'], reloaded['dico_word2id'], reloaded['dico_counts'])
|
78 |
+
encoder = TransformerModel(model_params, dico, is_encoder=True, with_output=True).cuda().eval()
|
79 |
+
decoder = TransformerModel(model_params, dico, is_encoder=False, with_output=True).cuda().eval()
|
80 |
+
encoder.load_state_dict(reloaded['encoder'])
|
81 |
+
decoder.load_state_dict(reloaded['decoder'])
|
82 |
+
params.src_id = model_params.lang2id[params.src_lang]
|
83 |
+
params.tgt_id = model_params.lang2id[params.tgt_lang]
|
84 |
+
|
85 |
+
# read sentences from stdin
|
86 |
+
src_sent = []
|
87 |
+
for line in sys.stdin.readlines():
|
88 |
+
assert len(line.strip().split()) > 0
|
89 |
+
src_sent.append(line)
|
90 |
+
logger.info("Read %i sentences from stdin. Translating ..." % len(src_sent))
|
91 |
+
|
92 |
+
f = io.open(params.output_path, 'w', encoding='utf-8')
|
93 |
+
|
94 |
+
for i in range(0, len(src_sent), params.batch_size):
|
95 |
+
|
96 |
+
# prepare batch
|
97 |
+
word_ids = [torch.LongTensor([dico.index(w) for w in s.strip().split()])
|
98 |
+
for s in src_sent[i:i + params.batch_size]]
|
99 |
+
lengths = torch.LongTensor([len(s) + 2 for s in word_ids])
|
100 |
+
batch = torch.LongTensor(lengths.max().item(), lengths.size(0)).fill_(params.pad_index)
|
101 |
+
batch[0] = params.eos_index
|
102 |
+
for j, s in enumerate(word_ids):
|
103 |
+
if lengths[j] > 2: # if sentence not empty
|
104 |
+
batch[1:lengths[j] - 1, j].copy_(s)
|
105 |
+
batch[lengths[j] - 1, j] = params.eos_index
|
106 |
+
langs = batch.clone().fill_(params.src_id)
|
107 |
+
|
108 |
+
# encode source batch and translate it
|
109 |
+
encoded = encoder('fwd', x=batch.cuda(), lengths=lengths.cuda(), langs=langs.cuda(), causal=False)
|
110 |
+
encoded = encoded.transpose(0, 1)
|
111 |
+
decoded, dec_lengths = decoder.generate(encoded, lengths.cuda(), params.tgt_id, max_len=int(1.5 * lengths.max().item() + 10))
|
112 |
+
|
113 |
+
# convert sentences to words
|
114 |
+
for j in range(decoded.size(1)):
|
115 |
+
|
116 |
+
# remove delimiters
|
117 |
+
sent = decoded[:, j]
|
118 |
+
delimiters = (sent == params.eos_index).nonzero().view(-1)
|
119 |
+
assert len(delimiters) >= 1 and delimiters[0].item() == 0
|
120 |
+
sent = sent[1:] if len(delimiters) == 1 else sent[1:delimiters[1]]
|
121 |
+
|
122 |
+
# output translation
|
123 |
+
source = src_sent[i + j].strip()
|
124 |
+
target = " ".join([dico[sent[k].item()] for k in range(len(sent))])
|
125 |
+
sys.stderr.write("%i / %i: %s -> %s\n" % (i + j, len(src_sent), source, target))
|
126 |
+
f.write(target + "\n")
|
127 |
+
|
128 |
+
f.close()
|
129 |
+
|
130 |
+
|
131 |
+
if __name__ == '__main__':
|
132 |
+
|
133 |
+
# generate parser / parse parameters
|
134 |
+
parser = get_parser()
|
135 |
+
params = parser.parse_args()
|
136 |
+
|
137 |
+
# check parameters
|
138 |
+
assert os.path.isfile(params.model_path)
|
139 |
+
assert params.src_lang != '' and params.tgt_lang != '' and params.src_lang != params.tgt_lang
|
140 |
+
assert params.output_path and not os.path.isfile(params.output_path)
|
141 |
+
|
142 |
+
# translate
|
143 |
+
with torch.no_grad():
|
144 |
+
main(params)
|