sachit-menon
commited on
Commit
•
ef02a1a
1
Parent(s):
4115a6e
Create snt_pipeline.py
Browse files- snt_pipeline.py +756 -0
snt_pipeline.py
ADDED
@@ -0,0 +1,756 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Copyright 2023 The InstructPix2Pix Authors and The HuggingFace Team. All rights reserved.
|
2 |
+
#
|
3 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
4 |
+
# you may not use this file except in compliance with the License.
|
5 |
+
# You may obtain a copy of the License at
|
6 |
+
#
|
7 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
8 |
+
#
|
9 |
+
# Unless required by applicable law or agreed to in writing, software
|
10 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
11 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
12 |
+
# See the License for the specific language governing permissions and
|
13 |
+
# limitations under the License.
|
14 |
+
|
15 |
+
import inspect
|
16 |
+
import warnings
|
17 |
+
from typing import Callable, List, Optional, Union
|
18 |
+
|
19 |
+
import PIL
|
20 |
+
import torch
|
21 |
+
from transformers import CLIPImageProcessor
|
22 |
+
|
23 |
+
from diffusers.image_processor import VaeImageProcessor
|
24 |
+
from diffusers.loaders import LoraLoaderMixin, TextualInversionLoaderMixin
|
25 |
+
from diffusers.utils import (
|
26 |
+
deprecate,
|
27 |
+
is_accelerate_available,
|
28 |
+
is_accelerate_version,
|
29 |
+
logging,
|
30 |
+
)
|
31 |
+
|
32 |
+
try:
|
33 |
+
from diffusers.utils import randn_tensor
|
34 |
+
except ImportError:
|
35 |
+
from diffusers.utils.torch_utils import randn_tensor
|
36 |
+
|
37 |
+
|
38 |
+
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
|
39 |
+
from diffusers.pipelines.stable_diffusion import StableDiffusionPipelineOutput
|
40 |
+
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
|
41 |
+
|
42 |
+
from trainer.models.sd_model import SDModel
|
43 |
+
|
44 |
+
|
45 |
+
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
|
46 |
+
|
47 |
+
from typing import Callable, List, Optional, Union
|
48 |
+
import PIL
|
49 |
+
|
50 |
+
from transformers import CLIPImageProcessor
|
51 |
+
|
52 |
+
from diffusers.image_processor import VaeImageProcessor
|
53 |
+
|
54 |
+
|
55 |
+
|
56 |
+
|
57 |
+
|
58 |
+
|
59 |
+
|
60 |
+
|
61 |
+
|
62 |
+
# from hydra.utils import instantiate
|
63 |
+
|
64 |
+
from einops import rearrange, repeat
|
65 |
+
|
66 |
+
|
67 |
+
class ShowNotTellPipeline(DiffusionPipeline, TextualInversionLoaderMixin, LoraLoaderMixin):
|
68 |
+
r"""
|
69 |
+
Pipeline for pixel-level image editing by following text instructions. Based on Stable Diffusion.
|
70 |
+
|
71 |
+
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the
|
72 |
+
library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)
|
73 |
+
|
74 |
+
In addition the pipeline inherits the following loading methods:
|
75 |
+
- *Textual-Inversion*: [`loaders.TextualInversionLoaderMixin.load_textual_inversion`]
|
76 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.load_lora_weights`]
|
77 |
+
|
78 |
+
as well as the following saving methods:
|
79 |
+
- *LoRA*: [`loaders.LoraLoaderMixin.save_lora_weights`]
|
80 |
+
|
81 |
+
Args:
|
82 |
+
vae ([`AutoencoderKL`]):
|
83 |
+
Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.
|
84 |
+
text_encoder ([`CLIPTextModel`]):
|
85 |
+
Frozen text-encoder. Stable Diffusion uses the text portion of
|
86 |
+
[CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically
|
87 |
+
the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.
|
88 |
+
tokenizer (`CLIPTokenizer`):
|
89 |
+
Tokenizer of class
|
90 |
+
[CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).
|
91 |
+
unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.
|
92 |
+
scheduler ([`SchedulerMixin`]):
|
93 |
+
A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of
|
94 |
+
[`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].
|
95 |
+
safety_checker ([`StableDiffusionSafetyChecker`]):
|
96 |
+
Classification module that estimates whether generated images could be considered offensive or harmful.
|
97 |
+
Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details.
|
98 |
+
feature_extractor ([`CLIPImageProcessor`]):
|
99 |
+
Model that extracts features from generated images to be used as inputs for the `safety_checker`.
|
100 |
+
"""
|
101 |
+
_optional_components = ["safety_checker", "feature_extractor"]
|
102 |
+
|
103 |
+
def __init__(
|
104 |
+
self,
|
105 |
+
# cfg: SDModelConfig,
|
106 |
+
model: SDModel,
|
107 |
+
safety_checker: StableDiffusionSafetyChecker = None,
|
108 |
+
feature_extractor: CLIPImageProcessor = None,
|
109 |
+
requires_safety_checker: bool = False,
|
110 |
+
):
|
111 |
+
super().__init__()
|
112 |
+
# self.model.cfg = cfg
|
113 |
+
self.register_modules(model=model, safety_checker=safety_checker, feature_extractor=feature_extractor)
|
114 |
+
# self.register_to_config(cfg=dataclasses.asdict(cfg))
|
115 |
+
|
116 |
+
self.model.vae_scale_factor = 2 ** (len(self.model.vae.config.block_out_channels) - 1)
|
117 |
+
self.image_processor = VaeImageProcessor(vae_scale_factor=self.model.vae_scale_factor)
|
118 |
+
self.register_to_config(requires_safety_checker=requires_safety_checker)
|
119 |
+
|
120 |
+
@torch.no_grad()
|
121 |
+
def __call__(
|
122 |
+
self,
|
123 |
+
prompts,
|
124 |
+
image,
|
125 |
+
num_inference_steps: int = 100,
|
126 |
+
guidance_scale: float = 7.5,
|
127 |
+
image_guidance_scale: float = 1.5,
|
128 |
+
negative_prompt: Optional[Union[str, List[str]]] = None,
|
129 |
+
num_images_per_prompt: Optional[int] = 1,
|
130 |
+
eta: float = 0.0,
|
131 |
+
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
|
132 |
+
latents: Optional[torch.FloatTensor] = None,
|
133 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
134 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
135 |
+
output_type: Optional[str] = "pil",
|
136 |
+
return_dict: bool = True,
|
137 |
+
callback: Optional[Callable[[int, int, torch.FloatTensor], None]] = None,
|
138 |
+
callback_steps: int = 1,):
|
139 |
+
|
140 |
+
if isinstance(prompts, str):
|
141 |
+
prompts = [prompts]
|
142 |
+
if isinstance(prompts, list):
|
143 |
+
input_ids = self.fancy_get_input_ids(prompts, self.model.text_encoder.device) # TODO see if reshaping needed to match train dataloader
|
144 |
+
else:
|
145 |
+
input_ids = prompts
|
146 |
+
|
147 |
+
if isinstance(image, PIL.Image.Image):
|
148 |
+
image = [image]
|
149 |
+
if isinstance(image, list):
|
150 |
+
preprocessed_images = self.image_processor.preprocess(image)
|
151 |
+
else:
|
152 |
+
preprocessed_images = image
|
153 |
+
|
154 |
+
batch_size = input_ids.shape[0]
|
155 |
+
|
156 |
+
# device = self._execution_device
|
157 |
+
device = self.model.text_encoder.device # TODO figure out execution device stuff
|
158 |
+
# here `guidance_scale` is defined analog to the guidance weight `w` of equation (2)
|
159 |
+
# of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1`
|
160 |
+
# corresponds to doing no classifier free guidance.
|
161 |
+
do_classifier_free_guidance = guidance_scale > 1.0 and image_guidance_scale >= 1.0
|
162 |
+
# check if scheduler is in sigmas space
|
163 |
+
scheduler_is_in_sigma_space = hasattr(self.model.noise_scheduler, "sigmas")
|
164 |
+
|
165 |
+
|
166 |
+
prompt_embeds = self.encode_prompt_batch(input_ids, batch_size, device, num_images_per_prompt, do_classifier_free_guidance, negative_prompt, prompt_embeds, negative_prompt_embeds)
|
167 |
+
|
168 |
+
# 4. set timesteps
|
169 |
+
self.model.noise_scheduler.set_timesteps(num_inference_steps, device=device)
|
170 |
+
timesteps = self.model.noise_scheduler.timesteps
|
171 |
+
|
172 |
+
# 5. Prepare Image latents
|
173 |
+
image_latents = self.prepare_image_latents(
|
174 |
+
preprocessed_images,
|
175 |
+
batch_size,
|
176 |
+
num_images_per_prompt,
|
177 |
+
prompt_embeds.dtype,
|
178 |
+
device,
|
179 |
+
do_classifier_free_guidance,
|
180 |
+
generator,
|
181 |
+
)
|
182 |
+
|
183 |
+
height, width = image_latents.shape[-2:]
|
184 |
+
height = height * self.model.vae_scale_factor
|
185 |
+
width = width * self.model.vae_scale_factor
|
186 |
+
|
187 |
+
# 6. Prepare latent variables
|
188 |
+
num_channels_latents = self.model.vae.config.latent_channels
|
189 |
+
|
190 |
+
latents = self.prepare_latents(
|
191 |
+
batch_size * num_images_per_prompt,
|
192 |
+
num_channels_latents,
|
193 |
+
height,
|
194 |
+
width,
|
195 |
+
prompt_embeds.dtype,
|
196 |
+
device,
|
197 |
+
generator,
|
198 |
+
latents,
|
199 |
+
)
|
200 |
+
|
201 |
+
# 7. Check that shapes of latents and image match the UNet channels
|
202 |
+
num_channels_image = image_latents.shape[1]
|
203 |
+
if num_channels_latents + num_channels_image != self.model.unet.config.in_channels:
|
204 |
+
raise ValueError(
|
205 |
+
f"Incorrect configuration settings! The config of `pipeline.model.unet`: {self.model.unet.config} expects"
|
206 |
+
f" {self.model.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +"
|
207 |
+
f" `num_channels_image`: {num_channels_image} "
|
208 |
+
f" = {num_channels_latents+num_channels_image}. Please verify the config of"
|
209 |
+
" `pipeline.model.unet` or your `image` input."
|
210 |
+
)
|
211 |
+
|
212 |
+
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
|
213 |
+
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)
|
214 |
+
|
215 |
+
# 9. Denoising loop
|
216 |
+
num_warmup_steps = len(timesteps) - num_inference_steps * self.model.noise_scheduler.order
|
217 |
+
with self.progress_bar(total=num_inference_steps) as progress_bar:
|
218 |
+
for i, t in enumerate(timesteps):
|
219 |
+
|
220 |
+
|
221 |
+
|
222 |
+
# Expand the latents if we are doing classifier free guidance.
|
223 |
+
# The latents are expanded 3 times because for pix2pix the guidance\
|
224 |
+
# is applied for both the text and the input image.
|
225 |
+
latent_model_input = torch.cat([latents] * 3) if do_classifier_free_guidance else latents
|
226 |
+
# if i == 0:
|
227 |
+
# if self.model.cfg.image_positional_encoding_type is not None:
|
228 |
+
# third = latents.shape[0]//3
|
229 |
+
# cond_latents = latents[third:2*third]
|
230 |
+
# cond_latents = rearrange(cond_latents, 'b c (s h) w -> (b s) c h w', s=self.model.cfg.sequence_length)
|
231 |
+
# cond_latents = self.model.apply_image_positional_encoding(cond_latents, self.model.cfg.sequence_length)
|
232 |
+
# cond_latents = rearrange(cond_latents, '(b s) c h w -> b c (s h) w', s=self.model.cfg.sequence_length)
|
233 |
+
# latents[third:2*third] = cond_latents
|
234 |
+
|
235 |
+
# concat latents, image_latents in the channel dimension
|
236 |
+
scaled_latent_model_input = self.model.noise_scheduler.scale_model_input(latent_model_input, t)
|
237 |
+
|
238 |
+
scaled_latent_model_input = torch.cat([scaled_latent_model_input, image_latents], dim=1)
|
239 |
+
|
240 |
+
# predict the noise residual
|
241 |
+
noise_pred = self.model.unet(
|
242 |
+
scaled_latent_model_input, t, encoder_hidden_states=prompt_embeds, return_dict=False
|
243 |
+
)[0]
|
244 |
+
|
245 |
+
# Hack:
|
246 |
+
# For karras style schedulers the model does classifer free guidance using the
|
247 |
+
# predicted_original_sample instead of the noise_pred. So we need to compute the
|
248 |
+
# predicted_original_sample here if we are using a karras style scheduler.
|
249 |
+
if scheduler_is_in_sigma_space:
|
250 |
+
step_index = (self.model.noise_scheduler.timesteps == t).nonzero().item()
|
251 |
+
sigma = self.model.noise_scheduler.sigmas[step_index]
|
252 |
+
noise_pred = latent_model_input - sigma * noise_pred
|
253 |
+
|
254 |
+
# perform guidance
|
255 |
+
if do_classifier_free_guidance:
|
256 |
+
noise_pred_text, noise_pred_image, noise_pred_uncond = noise_pred.chunk(3)
|
257 |
+
noise_pred = (
|
258 |
+
noise_pred_uncond
|
259 |
+
+ guidance_scale * (noise_pred_text - noise_pred_image)
|
260 |
+
+ image_guidance_scale * (noise_pred_image - noise_pred_uncond)
|
261 |
+
)
|
262 |
+
|
263 |
+
# Hack:
|
264 |
+
# For karras style schedulers the model does classifer free guidance using the
|
265 |
+
# predicted_original_sample instead of the noise_pred. But the scheduler.step function
|
266 |
+
# expects the noise_pred and computes the predicted_original_sample internally. So we
|
267 |
+
# need to overwrite the noise_pred here such that the value of the computed
|
268 |
+
# predicted_original_sample is correct.
|
269 |
+
if scheduler_is_in_sigma_space:
|
270 |
+
noise_pred = (noise_pred - latents) / (-sigma)
|
271 |
+
|
272 |
+
# compute the previous noisy sample x_t -> x_t-1
|
273 |
+
latents = self.model.noise_scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]
|
274 |
+
|
275 |
+
|
276 |
+
|
277 |
+
# call the callback, if provided
|
278 |
+
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.model.noise_scheduler.order == 0):
|
279 |
+
progress_bar.update()
|
280 |
+
if callback is not None and i % callback_steps == 0:
|
281 |
+
callback(i, t, latents)
|
282 |
+
|
283 |
+
if not output_type == "latent":
|
284 |
+
latents = rearrange(latents, 'b c (s h) w -> (b s) c h w', s=self.model.cfg.sequence_length) # these are image latents, so sequence_length instead of text_sequence_length
|
285 |
+
image = self.model.vae.decode(latents / self.model.vae.config.scaling_factor, return_dict=False)[0]
|
286 |
+
# image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
|
287 |
+
else:
|
288 |
+
image = latents
|
289 |
+
|
290 |
+
has_nsfw_concept = None
|
291 |
+
do_denormalize = [True] * image.shape[0]
|
292 |
+
# if has_nsfw_concept is None:
|
293 |
+
# do_denormalize = [True] * image.shape[0]
|
294 |
+
# else:
|
295 |
+
# do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
|
296 |
+
|
297 |
+
image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)
|
298 |
+
|
299 |
+
# Offload last model to CPU
|
300 |
+
if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None:
|
301 |
+
self.final_offload_hook.offload()
|
302 |
+
|
303 |
+
if not return_dict:
|
304 |
+
return (image, has_nsfw_concept)
|
305 |
+
|
306 |
+
return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)
|
307 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_sequential_cpu_offload
|
308 |
+
def enable_sequential_cpu_offload(self, gpu_id=0):
|
309 |
+
r"""
|
310 |
+
Offloads all models to CPU using accelerate, significantly reducing memory usage. When called, unet,
|
311 |
+
text_encoder, vae and safety checker have their state dicts saved to CPU and then are moved to a
|
312 |
+
`torch.device('meta') and loaded to GPU only when their specific submodule has its `forward` method called.
|
313 |
+
Note that offloading happens on a submodule basis. Memory savings are higher than with
|
314 |
+
`enable_model_cpu_offload`, but performance is lower.
|
315 |
+
"""
|
316 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.14.0"):
|
317 |
+
from accelerate import cpu_offload
|
318 |
+
else:
|
319 |
+
raise ImportError("`enable_sequential_cpu_offload` requires `accelerate v0.14.0` or higher")
|
320 |
+
|
321 |
+
device = torch.device(f"cuda:{gpu_id}")
|
322 |
+
|
323 |
+
if self.device.type != "cpu":
|
324 |
+
self.to("cpu", silence_dtype_warnings=True)
|
325 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
326 |
+
|
327 |
+
for cpu_offloaded_model in [self.model.unet, self.model.text_encoder, self.model.vae]:
|
328 |
+
cpu_offload(cpu_offloaded_model, device)
|
329 |
+
|
330 |
+
if self.safety_checker is not None:
|
331 |
+
cpu_offload(self.safety_checker, execution_device=device, offload_buffers=True)
|
332 |
+
|
333 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.enable_model_cpu_offload
|
334 |
+
def enable_model_cpu_offload(self, gpu_id=0):
|
335 |
+
r"""
|
336 |
+
Offloads all models to CPU using accelerate, reducing memory usage with a low impact on performance. Compared
|
337 |
+
to `enable_sequential_cpu_offload`, this method moves one whole model at a time to the GPU when its `forward`
|
338 |
+
method is called, and the model remains in GPU until the next model runs. Memory savings are lower than with
|
339 |
+
`enable_sequential_cpu_offload`, but performance is much better due to the iterative execution of the `unet`.
|
340 |
+
"""
|
341 |
+
if is_accelerate_available() and is_accelerate_version(">=", "0.17.0.dev0"):
|
342 |
+
from accelerate import cpu_offload_with_hook
|
343 |
+
else:
|
344 |
+
raise ImportError("`enable_model_cpu_offload` requires `accelerate v0.17.0` or higher.")
|
345 |
+
|
346 |
+
device = torch.device(f"cuda:{gpu_id}")
|
347 |
+
|
348 |
+
if self.device.type != "cpu":
|
349 |
+
self.to("cpu", silence_dtype_warnings=True)
|
350 |
+
torch.cuda.empty_cache() # otherwise we don't see the memory savings (but they probably exist)
|
351 |
+
|
352 |
+
hook = None
|
353 |
+
for cpu_offloaded_model in [self.model.text_encoder, self.model.unet, self.model.vae]:
|
354 |
+
_, hook = cpu_offload_with_hook(cpu_offloaded_model, device, prev_module_hook=hook)
|
355 |
+
|
356 |
+
if self.safety_checker is not None:
|
357 |
+
_, hook = cpu_offload_with_hook(self.safety_checker, device, prev_module_hook=hook)
|
358 |
+
|
359 |
+
# We'll offload the last model manually.
|
360 |
+
self.final_offload_hook = hook
|
361 |
+
|
362 |
+
@property
|
363 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline._execution_device
|
364 |
+
def _execution_device(self):
|
365 |
+
r"""
|
366 |
+
Returns the device on which the pipeline's models will be executed. After calling
|
367 |
+
`pipeline.enable_sequential_cpu_offload()` the execution device can only be inferred from Accelerate's module
|
368 |
+
hooks.
|
369 |
+
"""
|
370 |
+
if not hasattr(self.model.unet, "_hf_hook"):
|
371 |
+
return self.device
|
372 |
+
for module in self.model.unet.modules():
|
373 |
+
if (
|
374 |
+
hasattr(module, "_hf_hook")
|
375 |
+
and hasattr(module._hf_hook, "execution_device")
|
376 |
+
and module._hf_hook.execution_device is not None
|
377 |
+
):
|
378 |
+
return torch.device(module._hf_hook.execution_device)
|
379 |
+
return self.device
|
380 |
+
|
381 |
+
def _encode_prompt(
|
382 |
+
self,
|
383 |
+
prompt,
|
384 |
+
device,
|
385 |
+
num_images_per_prompt,
|
386 |
+
do_classifier_free_guidance,
|
387 |
+
negative_prompt=None,
|
388 |
+
prompt_embeds: Optional[torch.FloatTensor] = None,
|
389 |
+
negative_prompt_embeds: Optional[torch.FloatTensor] = None,
|
390 |
+
):
|
391 |
+
r"""
|
392 |
+
Encodes the prompt into text encoder hidden states.
|
393 |
+
|
394 |
+
Args:
|
395 |
+
prompt (`str` or `List[str]`, *optional*):
|
396 |
+
prompt to be encoded
|
397 |
+
device: (`torch.device`):
|
398 |
+
torch device
|
399 |
+
num_images_per_prompt (`int`):
|
400 |
+
number of images that should be generated per prompt
|
401 |
+
do_classifier_free_guidance (`bool`):
|
402 |
+
whether to use classifier free guidance or not
|
403 |
+
negative_ prompt (`str` or `List[str]`, *optional*):
|
404 |
+
The prompt or prompts not to guide the image generation. If not defined, one has to pass
|
405 |
+
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
|
406 |
+
less than `1`).
|
407 |
+
prompt_embeds (`torch.FloatTensor`, *optional*):
|
408 |
+
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
|
409 |
+
provided, text embeddings will be generated from `prompt` input argument.
|
410 |
+
negative_prompt_embeds (`torch.FloatTensor`, *optional*):
|
411 |
+
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
|
412 |
+
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
|
413 |
+
argument.
|
414 |
+
"""
|
415 |
+
if prompt is not None and isinstance(prompt, str):
|
416 |
+
batch_size = 1
|
417 |
+
elif prompt is not None and isinstance(prompt, list):
|
418 |
+
batch_size = len(prompt)
|
419 |
+
else:
|
420 |
+
batch_size = prompt_embeds.shape[0]
|
421 |
+
|
422 |
+
if prompt_embeds is None:
|
423 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
424 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
425 |
+
prompt = self.maybe_convert_prompt(prompt, self.model.tokenizer)
|
426 |
+
|
427 |
+
text_inputs = self.model.tokenizer(
|
428 |
+
prompt,
|
429 |
+
padding="max_length",
|
430 |
+
max_length=self.model.tokenizer.model_max_length,
|
431 |
+
truncation=True,
|
432 |
+
return_tensors="pt",
|
433 |
+
)
|
434 |
+
text_input_ids = text_inputs.input_ids
|
435 |
+
untruncated_ids = self.model.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
436 |
+
|
437 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
438 |
+
text_input_ids, untruncated_ids
|
439 |
+
):
|
440 |
+
removed_text = self.model.tokenizer.batch_decode(
|
441 |
+
untruncated_ids[:, self.model.tokenizer.model_max_length - 1 : -1]
|
442 |
+
)
|
443 |
+
logger.warning(
|
444 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
445 |
+
f" {self.model.tokenizer.model_max_length} tokens: {removed_text}"
|
446 |
+
)
|
447 |
+
|
448 |
+
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask:
|
449 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
450 |
+
else:
|
451 |
+
attention_mask = None
|
452 |
+
|
453 |
+
prompt_embeds = self.model.text_encoder(
|
454 |
+
text_input_ids.to(device),
|
455 |
+
attention_mask=attention_mask,
|
456 |
+
)
|
457 |
+
prompt_embeds = prompt_embeds[0]
|
458 |
+
|
459 |
+
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device)
|
460 |
+
|
461 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
462 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
463 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
464 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
465 |
+
|
466 |
+
# get unconditional embeddings for classifier free guidance
|
467 |
+
if do_classifier_free_guidance and negative_prompt_embeds is None:
|
468 |
+
uncond_tokens: List[str]
|
469 |
+
if negative_prompt is None:
|
470 |
+
uncond_tokens = [""] * batch_size
|
471 |
+
elif type(prompt) is not type(negative_prompt):
|
472 |
+
raise TypeError(
|
473 |
+
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
|
474 |
+
f" {type(prompt)}."
|
475 |
+
)
|
476 |
+
elif isinstance(negative_prompt, str):
|
477 |
+
uncond_tokens = [negative_prompt]
|
478 |
+
elif batch_size != len(negative_prompt):
|
479 |
+
raise ValueError(
|
480 |
+
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
|
481 |
+
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
|
482 |
+
" the batch size of `prompt`."
|
483 |
+
)
|
484 |
+
else:
|
485 |
+
uncond_tokens = negative_prompt
|
486 |
+
|
487 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
488 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
489 |
+
uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.model.tokenizer)
|
490 |
+
|
491 |
+
max_length = prompt_embeds.shape[1]
|
492 |
+
uncond_input = self.model.tokenizer(
|
493 |
+
uncond_tokens,
|
494 |
+
padding="max_length",
|
495 |
+
max_length=max_length,
|
496 |
+
truncation=True,
|
497 |
+
return_tensors="pt",
|
498 |
+
)
|
499 |
+
|
500 |
+
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask:
|
501 |
+
attention_mask = uncond_input.attention_mask.to(device)
|
502 |
+
else:
|
503 |
+
attention_mask = None
|
504 |
+
|
505 |
+
negative_prompt_embeds = self.model.text_encoder(
|
506 |
+
uncond_input.input_ids.to(device),
|
507 |
+
attention_mask=attention_mask,
|
508 |
+
)
|
509 |
+
negative_prompt_embeds = negative_prompt_embeds[0]
|
510 |
+
|
511 |
+
if do_classifier_free_guidance:
|
512 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
513 |
+
seq_len = negative_prompt_embeds.shape[1]
|
514 |
+
|
515 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device)
|
516 |
+
|
517 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
518 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
519 |
+
|
520 |
+
# For classifier free guidance, we need to do two forward passes.
|
521 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
522 |
+
# to avoid doing two forward passes
|
523 |
+
# pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
|
524 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds])
|
525 |
+
|
526 |
+
return prompt_embeds
|
527 |
+
|
528 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.run_safety_checker
|
529 |
+
def run_safety_checker(self, image, device, dtype):
|
530 |
+
if self.safety_checker is None:
|
531 |
+
has_nsfw_concept = None
|
532 |
+
else:
|
533 |
+
if torch.is_tensor(image):
|
534 |
+
feature_extractor_input = self.image_processor.postprocess(image, output_type="pil")
|
535 |
+
else:
|
536 |
+
feature_extractor_input = self.image_processor.numpy_to_pil(image)
|
537 |
+
safety_checker_input = self.feature_extractor(feature_extractor_input, return_tensors="pt").to(device)
|
538 |
+
image, has_nsfw_concept = self.safety_checker(
|
539 |
+
images=image, clip_input=safety_checker_input.pixel_values.to(dtype)
|
540 |
+
)
|
541 |
+
return image, has_nsfw_concept
|
542 |
+
|
543 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs
|
544 |
+
def prepare_extra_step_kwargs(self, generator, eta):
|
545 |
+
# prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
|
546 |
+
# eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
|
547 |
+
# eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
|
548 |
+
# and should be between [0, 1]
|
549 |
+
|
550 |
+
accepts_eta = "eta" in set(inspect.signature(self.model.noise_scheduler.step).parameters.keys())
|
551 |
+
extra_step_kwargs = {}
|
552 |
+
if accepts_eta:
|
553 |
+
extra_step_kwargs["eta"] = eta
|
554 |
+
|
555 |
+
# check if the scheduler accepts generator
|
556 |
+
accepts_generator = "generator" in set(inspect.signature(self.model.noise_scheduler.step).parameters.keys())
|
557 |
+
if accepts_generator:
|
558 |
+
extra_step_kwargs["generator"] = generator
|
559 |
+
return extra_step_kwargs
|
560 |
+
|
561 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.decode_latents
|
562 |
+
def decode_latents(self, latents):
|
563 |
+
warnings.warn(
|
564 |
+
"The decode_latents method is deprecated and will be removed in a future version. Please"
|
565 |
+
" use VaeImageProcessor instead",
|
566 |
+
FutureWarning,
|
567 |
+
)
|
568 |
+
latents = 1 / self.model.vae.config.scaling_factor * latents
|
569 |
+
image = self.model.vae.decode(latents, return_dict=False)[0]
|
570 |
+
image = (image / 2 + 0.5).clamp(0, 1)
|
571 |
+
# we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
|
572 |
+
image = image.cpu().permute(0, 2, 3, 1).float().numpy()
|
573 |
+
return image
|
574 |
+
|
575 |
+
def check_inputs(
|
576 |
+
self, prompt, callback_steps, negative_prompt=None, prompt_embeds=None, negative_prompt_embeds=None
|
577 |
+
):
|
578 |
+
if (callback_steps is None) or (
|
579 |
+
callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0)
|
580 |
+
):
|
581 |
+
raise ValueError(
|
582 |
+
f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
|
583 |
+
f" {type(callback_steps)}."
|
584 |
+
)
|
585 |
+
|
586 |
+
if prompt is not None and prompt_embeds is not None:
|
587 |
+
raise ValueError(
|
588 |
+
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
|
589 |
+
" only forward one of the two."
|
590 |
+
)
|
591 |
+
elif prompt is None and prompt_embeds is None:
|
592 |
+
raise ValueError(
|
593 |
+
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
|
594 |
+
)
|
595 |
+
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
|
596 |
+
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
|
597 |
+
|
598 |
+
if negative_prompt is not None and negative_prompt_embeds is not None:
|
599 |
+
raise ValueError(
|
600 |
+
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
|
601 |
+
f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
|
602 |
+
)
|
603 |
+
|
604 |
+
if prompt_embeds is not None and negative_prompt_embeds is not None:
|
605 |
+
if prompt_embeds.shape != negative_prompt_embeds.shape:
|
606 |
+
raise ValueError(
|
607 |
+
"`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
|
608 |
+
f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
|
609 |
+
f" {negative_prompt_embeds.shape}."
|
610 |
+
)
|
611 |
+
|
612 |
+
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_latents
|
613 |
+
def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
|
614 |
+
shape = (batch_size, num_channels_latents, height // self.model.vae_scale_factor, width // self.model.vae_scale_factor)
|
615 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
616 |
+
raise ValueError(
|
617 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
618 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
619 |
+
)
|
620 |
+
|
621 |
+
if latents is None:
|
622 |
+
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
|
623 |
+
else:
|
624 |
+
latents = latents.to(device)
|
625 |
+
|
626 |
+
# scale the initial noise by the standard deviation required by the scheduler
|
627 |
+
latents = latents * self.model.noise_scheduler.init_noise_sigma
|
628 |
+
return latents
|
629 |
+
|
630 |
+
def original_prepare_image_latents(
|
631 |
+
self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None
|
632 |
+
):
|
633 |
+
if not isinstance(image, (torch.Tensor, PIL.Image.Image, list)):
|
634 |
+
raise ValueError(
|
635 |
+
f"`image` has to be of type `torch.Tensor`, `PIL.Image.Image` or list but is {type(image)}"
|
636 |
+
)
|
637 |
+
|
638 |
+
image = image.to(device=device, dtype=dtype)
|
639 |
+
|
640 |
+
batch_size = batch_size * num_images_per_prompt
|
641 |
+
|
642 |
+
if image.shape[1] == 4:
|
643 |
+
image_latents = image
|
644 |
+
else:
|
645 |
+
if isinstance(generator, list) and len(generator) != batch_size:
|
646 |
+
raise ValueError(
|
647 |
+
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
|
648 |
+
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
|
649 |
+
)
|
650 |
+
|
651 |
+
if isinstance(generator, list):
|
652 |
+
image_latents = [self.model.vae.encode(image[i : i + 1]).latent_dist.mode() for i in range(batch_size)]
|
653 |
+
image_latents = torch.cat(image_latents, dim=0)
|
654 |
+
else:
|
655 |
+
image_latents = self.model.vae.encode(image).latent_dist.mode()
|
656 |
+
|
657 |
+
if batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] == 0:
|
658 |
+
# expand image_latents for batch_size
|
659 |
+
deprecation_message = (
|
660 |
+
f"You have passed {batch_size} text prompts (`prompt`), but only {image_latents.shape[0]} initial"
|
661 |
+
" images (`image`). Initial images are now duplicating to match the number of text prompts. Note"
|
662 |
+
" that this behavior is deprecated and will be removed in a version 1.0.0. Please make sure to update"
|
663 |
+
" your script to pass as many initial images as text prompts to suppress this warning."
|
664 |
+
)
|
665 |
+
deprecate("len(prompt) != len(image)", "1.0.0", deprecation_message, standard_warn=False)
|
666 |
+
additional_image_per_prompt = batch_size // image_latents.shape[0]
|
667 |
+
image_latents = torch.cat([image_latents] * additional_image_per_prompt, dim=0)
|
668 |
+
elif batch_size > image_latents.shape[0] and batch_size % image_latents.shape[0] != 0:
|
669 |
+
raise ValueError(
|
670 |
+
f"Cannot duplicate `image` of batch size {image_latents.shape[0]} to {batch_size} text prompts."
|
671 |
+
)
|
672 |
+
else:
|
673 |
+
image_latents = torch.cat([image_latents], dim=0)
|
674 |
+
|
675 |
+
if do_classifier_free_guidance:
|
676 |
+
uncond_image_latents = torch.zeros_like(image_latents)
|
677 |
+
image_latents = torch.cat([image_latents, image_latents, uncond_image_latents], dim=0)
|
678 |
+
|
679 |
+
return image_latents
|
680 |
+
|
681 |
+
def prepare_image_latents(self, image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator=None):
|
682 |
+
image_latents = self.original_prepare_image_latents(image, batch_size, num_images_per_prompt, dtype, device, do_classifier_free_guidance, generator)
|
683 |
+
return repeat(image_latents, 'b c h w -> b c (s h) w', s=self.model.cfg.sequence_length)
|
684 |
+
|
685 |
+
def fancy_get_input_ids(self, prompt, device):
|
686 |
+
# textual inversion: procecss multi-vector tokens if necessary
|
687 |
+
if isinstance(self, TextualInversionLoaderMixin):
|
688 |
+
prompt = self.maybe_convert_prompt(prompt, self.model.tokenizer)
|
689 |
+
|
690 |
+
text_inputs = self.model.tokenizer(
|
691 |
+
prompt,
|
692 |
+
padding="max_length",
|
693 |
+
max_length=self.model.tokenizer.model_max_length,
|
694 |
+
truncation=True,
|
695 |
+
return_tensors="pt",
|
696 |
+
)
|
697 |
+
text_input_ids = text_inputs.input_ids
|
698 |
+
untruncated_ids = self.model.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids
|
699 |
+
|
700 |
+
if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
|
701 |
+
text_input_ids, untruncated_ids
|
702 |
+
):
|
703 |
+
removed_text = self.model.tokenizer.batch_decode(
|
704 |
+
untruncated_ids[:, self.model.tokenizer.model_max_length - 1 : -1]
|
705 |
+
)
|
706 |
+
logger.warning(
|
707 |
+
"The following part of your input was truncated because CLIP can only handle sequences up to"
|
708 |
+
f" {self.model.tokenizer.model_max_length} tokens: {removed_text}"
|
709 |
+
)
|
710 |
+
|
711 |
+
if hasattr(self.model.text_encoder.config, "use_attention_mask") and self.model.text_encoder.config.use_attention_mask:
|
712 |
+
attention_mask = text_inputs.attention_mask.to(device)
|
713 |
+
else:
|
714 |
+
attention_mask = None
|
715 |
+
text_input_ids = text_input_ids
|
716 |
+
return text_input_ids,attention_mask
|
717 |
+
|
718 |
+
def encode_prompt_batch(self,
|
719 |
+
input_ids,
|
720 |
+
batch_size,
|
721 |
+
device,
|
722 |
+
num_images_per_prompt: int=1,
|
723 |
+
do_classifier_free_guidance: bool=False,
|
724 |
+
negative_prompt=None,
|
725 |
+
prompt_embeds=None,
|
726 |
+
negative_prompt_embeds=None,):
|
727 |
+
encoder_hidden_states = self.model.input_ids_to_text_condition(input_ids)
|
728 |
+
if self.model.cfg.positional_encoding_type is not None:
|
729 |
+
encoder_hidden_states = self.model.apply_step_positional_encoding(encoder_hidden_states)
|
730 |
+
prompt_embeds = encoder_hidden_states
|
731 |
+
prompt_embeds = prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device)
|
732 |
+
|
733 |
+
bs_embed, seq_len, _ = prompt_embeds.shape
|
734 |
+
# duplicate text embeddings for each generation per prompt, using mps friendly method
|
735 |
+
prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
736 |
+
prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)
|
737 |
+
|
738 |
+
if do_classifier_free_guidance:
|
739 |
+
if negative_prompt_embeds is None:
|
740 |
+
negative_prompt_embeds = self.model.get_null_conditioning()
|
741 |
+
negative_prompt_embeds = repeat(negative_prompt_embeds, 'o t l -> (b o) t l', b=batch_size) #, o=1
|
742 |
+
# duplicate unconditional embeddings for each generation per prompt, using mps friendly method
|
743 |
+
seq_len = negative_prompt_embeds.shape[1]
|
744 |
+
|
745 |
+
negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.model.text_encoder.dtype, device=device)
|
746 |
+
|
747 |
+
negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
|
748 |
+
negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)
|
749 |
+
|
750 |
+
# For classifier free guidance, we need to do two forward passes.
|
751 |
+
# Here we concatenate the unconditional and text embeddings into a single batch
|
752 |
+
# to avoid doing two forward passes
|
753 |
+
# pix2pix has two negative embeddings, and unlike in other pipelines latents are ordered [prompt_embeds, negative_prompt_embeds, negative_prompt_embeds]
|
754 |
+
prompt_embeds = torch.cat([prompt_embeds, negative_prompt_embeds, negative_prompt_embeds])
|
755 |
+
return prompt_embeds
|
756 |
+
|