ppo-LunarLander-v2 / config.json
sachinkum0009's picture
Upload PPO LunarLander-v2 trained agent
7e1681c verified
raw
history blame
13.1 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x781398a29990>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x781398a29a20>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x781398a29ab0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x781398a29b40>", "_build": "<function ActorCriticPolicy._build at 0x781398a29bd0>", "forward": "<function ActorCriticPolicy.forward at 0x781398a29c60>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x781398a29cf0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x781398a29d80>", "_predict": "<function ActorCriticPolicy._predict at 0x781398a29e10>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x781398a29ea0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x781398a29f30>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x781398a29fc0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7813989ca300>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1720186245549556693, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAID5ab2MwpA/i85hvYcFjL6kHLq8dL3DOAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVPwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGsKcer+5vuMAWyUTWcBjAF0lEdAnb5Rh2GIsXV9lChoBkdAbQG8e0XxfGgHTagBaAhHQJ3Bd0OmR/51fZQoaAZHQG4r5ggHNX5oB011AWgIR0CdxgSUTtb+dX2UKGgGR0BwPJwjt5UtaAdNYwFoCEdAncjMEzO5a3V9lChoBkdAam6dGy5ZsGgHTVkBaAhHQJ3K6JN0vGp1fZQoaAZHQG0FUb1h9b5oB01bAWgIR0CdzkUDuBtldX2UKGgGR0Bsafsw+MZQaAdNSQFoCEdAndA4CdSVGHV9lChoBkdAcB8FvAGjbmgHTWUBaAhHQJ3Sa0fHPu51fZQoaAZHQGtCy4vvjOtoB01RAWgIR0Cd1agIQe3hdX2UKGgGR0BxC1Zid8RdaAdNigFoCEdAndgVm4Ajp3V9lChoBkdAbzDymygPE2gHTasBaAhHQJ3atHLA57x1fZQoaAZHQHIMVTJhfBxoB01/AWgIR0Cd3kefqX4TdX2UKGgGR0BvPZaJQ+EAaAdNWQFoCEdAneBa508vEnV9lChoBkdAcPAFn7Hhj2gHTU4BaAhHQJ3iZ3Roh6l1fZQoaAZHQCUOR/3Fkx1oB00dAWgIR0Cd5WZR8+ibdX2UKGgGR0BtHhwQ176YaAdNUwFoCEdAned2dmQKbHV9lChoBkdAb73HjIaLoGgHTXABaAhHQJ3ppBdD6WR1fZQoaAZHQG1AmLDQ7cRoB01WAWgIR0Cd7PewLVnVdX2UKGgGR0BxXOQvHtF8aAdNSAFoCEdAne774WUKRnV9lChoBkdAcONQN0/4ZmgHTToBaAhHQJ3xQlHBk7R1fZQoaAZHQG/XjDbah6BoB019AWgIR0Cd9dz5XU6QdX2UKGgGR0BvGtB2OhkBaAdNpQFoCEdAnfldV/+bVnV9lChoBkdAbTv+DvmYB2gHTVYBaAhHQJ39LlNlAeJ1fZQoaAZHQG36hnanJkpoB01BAWgIR0Cd/0HVPN3XdX2UKGgGR0BwGWzkZJkHaAdNcwFoCEdAngGHIIWxhXV9lChoBkdAQ35okAxSHmgHS71oCEdAngKrv1DjR3V9lChoBkdAbh9B9Cu2Z2gHTaABaAhHQJ4GfItDlYF1fZQoaAZHQHCTiKFZgXxoB01JAWgIR0CeCIItUXHjdX2UKGgGR0BxC/Y+Sr5qaAdNZgFoCEdAngqqfnOjZnV9lChoBkdAbnCPuogmq2gHTUwBaAhHQJ4N93FDOTt1fZQoaAZHQGOhyAQQL/loB03oA2gIR0CeFVqmTC+DdX2UKGgGR0Bwe9d4VymzaAdNSQFoCEdAnhdWYv38GnV9lChoBkdAbnsj59E1EWgHTTsBaAhHQJ4ZSKR+z+p1fZQoaAZHQDKAM1CPZIxoB0u3aAhHQJ4bmzVtoBd1fZQoaAZHQHEJMX3xnWdoB01OAWgIR0CeHbI1cdHUdX2UKGgGR0BsiSAQQL/kaAdNOQFoCEdAnh+Var3j/HV9lChoBkdAcnGWXTmW+2gHTYYBaAhHQJ4jQbNr0rd1fZQoaAZHQG+HYHoouwpoB00wAWgIR0CeJauivgWKdX2UKGgGR0Ao+6ZH/cWTaAdLvWgIR0CeJxcWj45+dX2UKGgGR0BvcGQwK0D2aAdNQQFoCEdAninJ+pfhM3V9lChoBkdAbqVGb1AZ9GgHTVsBaAhHQJ4tzjrAxi51fZQoaAZHQHAKvu1F6RhoB01/AWgIR0CeMCGjKxLTdX2UKGgGR0BpBKzollbvaAdNnAFoCEdAnjPia/h2n3V9lChoBkdAYhHLg4wRG2gHTegDaAhHQJ46Jm29cr11fZQoaAZHQG7IUhePaL5oB01iAWgIR0CePZUMG5c1dX2UKGgGR0Bu9HjCHh0haAdNSgFoCEdAnj+RzRx95XV9lChoBkdAcGNx3FDOT2gHTU4BaAhHQJ5Bnm0VrRB1fZQoaAZHQHAdpKraM75oB01bAWgIR0CeROiblRxcdX2UKGgGR0BrYJxo7FKkaAdNQQFoCEdAnkbfgFX7tXV9lChoBkfAKbbHIZIg/2gHS+1oCEdAnkhL8vVVgnV9lChoBkdAVlJsXSBsh2gHTegDaAhHQJ5Pv6KtPpJ1fZQoaAZHQG90JKJ2t+1oB01ZAWgIR0CeUyqPwNLEdX2UKGgGR0BwMwZuQ6p6aAdNNwFoCEdAnlVzjR2KVXV9lChoBkdAbLr78ejmCGgHTVMBaAhHQJ5X8NVinYR1fZQoaAZHQHA8iwr1/UhoB01EAWgIR0CeXEbQTmGNdX2UKGgGR0BqlCYPXkHVaAdNMgFoCEdAnl7s0gr6L3V9lChoBkdAbvol6Z6Uq2gHTTkBaAhHQJ5g2+yquKZ1fZQoaAZHQHCtcIAwPAhoB003AWgIR0CeZAHd43WGdX2UKGgGR0BwV6Xb/Ot5aAdNbQFoCEdAnmZAHE/B33V9lChoBkdAWzcvkBCD3GgHTegDaAhHQJ5tnnNgSe11fZQoaAZHQG+6FQEZBLRoB01rAWgIR0Ceb9mRNh3JdX2UKGgGR0Bwiat7rs0IaAdNSAFoCEdAnnMWZE2HcnV9lChoBkdAcaaAh0QsgGgHTacBaAhHQJ51tFLFn7J1fZQoaAZHQHDrRZlnRLNoB01iAWgIR0Ced96TW5H3dX2UKGgGR0Btx+f29L6DaAdNSwFoCEdAnntBQemvXHV9lChoBkdASfRFocrAg2gHTTIBaAhHQJ59G7yxzJZ1fZQoaAZHQHBmI3eenQ9oB00yAWgIR0CefvjtXxOMdX2UKGgGR0BwZ2W9lEqlaAdNTAFoCEdAnoI3RkVer3V9lChoBkdAbyapgCwKSmgHTWgBaAhHQJ6Eou01IiF1fZQoaAZHQG+Z5ULlV95oB01oAWgIR0CehuQsPJ7tdX2UKGgGR0BwYdnctXgcaAdNngFoCEdAnovIBJZntnV9lChoBkdAcb/e40/GEWgHTT8BaAhHQJ6OY+X7cfx1fZQoaAZHQHJA4cJdB0JoB01RAWgIR0CekTiO/+KkdX2UKGgGR0Bu2Z3aBZp0aAdNQwFoCEdAnpSL9deIEnV9lChoBkfAQE+ig00m+mgHS9loCEdAnpXc8YAKfHV9lChoBkdAchopcHGCI2gHTZIBaAhHQJ6YUhePaL51fZQoaAZHQHAE4bjtG/hoB01mAWgIR0Cem7+10DEFdX2UKGgGR0BySbe/Ho5haAdNegFoCEdAnp4DisGPgnV9lChoBkdAb8xIPsiSq2gHTWoBaAhHQJ6gNdGAkLR1fZQoaAZHQGu1tG/etS1oB01hAWgIR0Ceo4UONHYpdX2UKGgGR0Bs2peb/ffoaAdNZQFoCEdAnqXI6CDmKnV9lChoBkdAbGX4+KTB7GgHTVYBaAhHQJ6n4+nqFAV1fZQoaAZHQG9JifQKKHhoB01gAWgIR0Ceq0XYDklvdX2UKGgGR0Bwx1AY51eTaAdNfQFoCEdAnq2brHEMs3V9lChoBkdAb2EWxhUip2gHTUwBaAhHQJ6vv6BRQ791fZQoaAZHQHAWlbqyGBZoB001AWgIR0CesuhtLteEdX2UKGgGR0BF/ABtDUmVaAdNJQFoCEdAnrTGj0th/nV9lChoBkdAcFPoCuEEkmgHTTwBaAhHQJ62qMUAT7F1fZQoaAZHQHBKno5ggHNoB01kAWgIR0CeujrylN1ydX2UKGgGR0BwH/JxNqQBaAdNZAFoCEdAnrz2HxjJ+3V9lChoBkdAb0EEkjX4CmgHTZkBaAhHQJ7APb/Ot4l1fZQoaAZHQHBVdCJGe+VoB01mAWgIR0CexFiG34KydX2UKGgGR0Btt3xOLzf8aAdNXQFoCEdAnsZ8Kw6hg3V9lChoBkdAbFFSeAd4mmgHTVYBaAhHQJ7IlWKdhAp1fZQoaAZHQG/fVB+nZTRoB02QAWgIR0CezDrnDBM0dX2UKGgGR0Bt8Ss0YTCcaAdNTAFoCEdAns5P8VHnU3V9lChoBkdAcfnBZpztC2gHTZkBaAhHQJ7Qu2/i5ut1fZQoaAZHQGt8JgCwKShoB01EAWgIR0Ce0/49X9zfdX2UKGgGR0BwCK+evpyIaAdNTwFoCEdAntYQ57w8XHV9lChoBkdAcLQ3kPtlZ2gHTVIBaAhHQJ7YJLoOhCd1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}