sachin18 commited on
Commit
90076d7
1 Parent(s): 335b8aa

End of training

Browse files
README.md ADDED
@@ -0,0 +1,81 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ base_model: microsoft/layoutlm-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - funsd
8
+ model-index:
9
+ - name: layoutlm-funsd
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # layoutlm-funsd
17
+
18
+ This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.7085
21
+ - Answer: {'precision': 0.721081081081081, 'recall': 0.8244746600741656, 'f1': 0.7693194925028833, 'number': 809}
22
+ - Header: {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119}
23
+ - Question: {'precision': 0.7871772039180766, 'recall': 0.8300469483568075, 'f1': 0.8080438756855575, 'number': 1065}
24
+ - Overall Precision: 0.7328
25
+ - Overall Recall: 0.7983
26
+ - Overall F1: 0.7642
27
+ - Overall Accuracy: 0.8112
28
+
29
+ ## Model description
30
+
31
+ More information needed
32
+
33
+ ## Intended uses & limitations
34
+
35
+ More information needed
36
+
37
+ ## Training and evaluation data
38
+
39
+ More information needed
40
+
41
+ ## Training procedure
42
+
43
+ ### Training hyperparameters
44
+
45
+ The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
+ - train_batch_size: 16
48
+ - eval_batch_size: 8
49
+ - seed: 42
50
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
51
+ - lr_scheduler_type: linear
52
+ - num_epochs: 15
53
+ - mixed_precision_training: Native AMP
54
+
55
+ ### Training results
56
+
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.792 | 1.0 | 10 | 1.5932 | {'precision': 0.03648648648648649, 'recall': 0.03337453646477132, 'f1': 0.034861200774693346, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3541114058355438, 'recall': 0.2507042253521127, 'f1': 0.29356789444749865, 'number': 1065} | 0.1968 | 0.1475 | 0.1686 | 0.3760 |
60
+ | 1.4339 | 2.0 | 20 | 1.2410 | {'precision': 0.2177121771217712, 'recall': 0.21878862793572312, 'f1': 0.218249075215783, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43688639551192143, 'recall': 0.5849765258215962, 'f1': 0.5002007226013649, 'number': 1065} | 0.3573 | 0.4014 | 0.3781 | 0.5877 |
61
+ | 1.0937 | 3.0 | 30 | 0.9505 | {'precision': 0.45005149330587024, 'recall': 0.5401730531520396, 'f1': 0.4910112359550562, 'number': 809} | {'precision': 0.045454545454545456, 'recall': 0.008403361344537815, 'f1': 0.014184397163120567, 'number': 119} | {'precision': 0.6046141607000796, 'recall': 0.7136150234741784, 'f1': 0.6546080964685616, 'number': 1065} | 0.5324 | 0.6011 | 0.5647 | 0.7057 |
62
+ | 0.835 | 4.0 | 40 | 0.7870 | {'precision': 0.6255274261603375, 'recall': 0.7330037082818294, 'f1': 0.6750142287990893, 'number': 809} | {'precision': 0.19298245614035087, 'recall': 0.09243697478991597, 'f1': 0.125, 'number': 119} | {'precision': 0.6779220779220779, 'recall': 0.7352112676056338, 'f1': 0.7054054054054054, 'number': 1065} | 0.6421 | 0.6959 | 0.6680 | 0.7601 |
63
+ | 0.6644 | 5.0 | 50 | 0.7063 | {'precision': 0.6771739130434783, 'recall': 0.7700865265760197, 'f1': 0.7206477732793521, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.2184873949579832, 'f1': 0.24761904761904763, 'number': 119} | {'precision': 0.6783161239078633, 'recall': 0.8018779342723005, 'f1': 0.7349397590361446, 'number': 1065} | 0.6621 | 0.7541 | 0.7051 | 0.7872 |
64
+ | 0.5612 | 6.0 | 60 | 0.6880 | {'precision': 0.6639593908629442, 'recall': 0.8084054388133498, 'f1': 0.7290969899665551, 'number': 809} | {'precision': 0.26262626262626265, 'recall': 0.2184873949579832, 'f1': 0.23853211009174313, 'number': 119} | {'precision': 0.7401229148375769, 'recall': 0.7915492957746478, 'f1': 0.76497277676951, 'number': 1065} | 0.6851 | 0.7642 | 0.7225 | 0.7937 |
65
+ | 0.4819 | 7.0 | 70 | 0.6610 | {'precision': 0.6937697993664202, 'recall': 0.8121137206427689, 'f1': 0.7482915717539863, 'number': 809} | {'precision': 0.30097087378640774, 'recall': 0.2605042016806723, 'f1': 0.27927927927927926, 'number': 119} | {'precision': 0.7568766637089619, 'recall': 0.8009389671361502, 'f1': 0.7782846715328468, 'number': 1065} | 0.7079 | 0.7732 | 0.7391 | 0.8034 |
66
+ | 0.4299 | 8.0 | 80 | 0.6725 | {'precision': 0.6850152905198776, 'recall': 0.830655129789864, 'f1': 0.7508379888268155, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7534364261168385, 'recall': 0.8234741784037559, 'f1': 0.7868999551368328, 'number': 1065} | 0.7012 | 0.7923 | 0.7439 | 0.7950 |
67
+ | 0.3801 | 9.0 | 90 | 0.6654 | {'precision': 0.7142857142857143, 'recall': 0.8158220024721878, 'f1': 0.7616849394114252, 'number': 809} | {'precision': 0.3047619047619048, 'recall': 0.2689075630252101, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7697715289982425, 'recall': 0.8225352112676056, 'f1': 0.7952791647753064, 'number': 1065} | 0.7236 | 0.7868 | 0.7538 | 0.8092 |
68
+ | 0.3757 | 10.0 | 100 | 0.6709 | {'precision': 0.7082452431289641, 'recall': 0.8281829419035847, 'f1': 0.7635327635327636, 'number': 809} | {'precision': 0.34, 'recall': 0.2857142857142857, 'f1': 0.31050228310502287, 'number': 119} | {'precision': 0.7769028871391076, 'recall': 0.8338028169014085, 'f1': 0.8043478260869565, 'number': 1065} | 0.7273 | 0.7988 | 0.7614 | 0.8145 |
69
+ | 0.3165 | 11.0 | 110 | 0.6781 | {'precision': 0.723726977248104, 'recall': 0.8257107540173053, 'f1': 0.7713625866050808, 'number': 809} | {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} | {'precision': 0.7736842105263158, 'recall': 0.828169014084507, 'f1': 0.7999999999999999, 'number': 1065} | 0.7252 | 0.7973 | 0.7596 | 0.8077 |
70
+ | 0.2993 | 12.0 | 120 | 0.6894 | {'precision': 0.71875, 'recall': 0.8244746600741656, 'f1': 0.7679907887161773, 'number': 809} | {'precision': 0.3247863247863248, 'recall': 0.31932773109243695, 'f1': 0.3220338983050848, 'number': 119} | {'precision': 0.7823008849557522, 'recall': 0.8300469483568075, 'f1': 0.8054669703872438, 'number': 1065} | 0.7306 | 0.7973 | 0.7625 | 0.8117 |
71
+ | 0.2822 | 13.0 | 130 | 0.7039 | {'precision': 0.7195652173913043, 'recall': 0.8182941903584673, 'f1': 0.7657605552342395, 'number': 809} | {'precision': 0.3125, 'recall': 0.33613445378151263, 'f1': 0.3238866396761134, 'number': 119} | {'precision': 0.7823008849557522, 'recall': 0.8300469483568075, 'f1': 0.8054669703872438, 'number': 1065} | 0.7282 | 0.7958 | 0.7605 | 0.8095 |
72
+ | 0.2595 | 14.0 | 140 | 0.7045 | {'precision': 0.72, 'recall': 0.823238566131026, 'f1': 0.7681660899653979, 'number': 809} | {'precision': 0.3418803418803419, 'recall': 0.33613445378151263, 'f1': 0.3389830508474576, 'number': 119} | {'precision': 0.7912578055307761, 'recall': 0.8328638497652582, 'f1': 0.8115279048490394, 'number': 1065} | 0.7365 | 0.7993 | 0.7666 | 0.8118 |
73
+ | 0.2617 | 15.0 | 150 | 0.7085 | {'precision': 0.721081081081081, 'recall': 0.8244746600741656, 'f1': 0.7693194925028833, 'number': 809} | {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119} | {'precision': 0.7871772039180766, 'recall': 0.8300469483568075, 'f1': 0.8080438756855575, 'number': 1065} | 0.7328 | 0.7983 | 0.7642 | 0.8112 |
74
+
75
+
76
+ ### Framework versions
77
+
78
+ - Transformers 4.41.1
79
+ - Pytorch 2.3.0+cu121
80
+ - Datasets 2.19.1
81
+ - Tokenizers 0.19.1
logs/events.out.tfevents.1717252354.280ef54c6982.3413.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:dceabba980d7850bdc817009faa5a3e3ffc3f86ab4fd8f5427273824e6850395
3
- size 14200
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a74e8508c323a305f88b630103f0f8bb5325f66b6cf11a2672ed4ad22caa451c
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:0dfc3521b6fba65112509f472bb6feb0c8bfef9a95d20bdab19f53fe4ac4d6ce
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f03b481e0e06f709bac683bd14d245aa191fcf806704f56cf66d7eeb458f35f6
3
  size 450558212
preprocessor_config.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_valid_processor_keys": [
3
+ "images",
4
+ "do_resize",
5
+ "size",
6
+ "resample",
7
+ "apply_ocr",
8
+ "ocr_lang",
9
+ "tesseract_config",
10
+ "return_tensors",
11
+ "data_format",
12
+ "input_data_format"
13
+ ],
14
+ "apply_ocr": true,
15
+ "do_resize": true,
16
+ "image_processor_type": "LayoutLMv2ImageProcessor",
17
+ "ocr_lang": null,
18
+ "processor_class": "LayoutLMv2Processor",
19
+ "resample": 2,
20
+ "size": {
21
+ "height": 224,
22
+ "width": 224
23
+ },
24
+ "tesseract_config": ""
25
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": {
3
+ "content": "[CLS]",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "mask_token": {
10
+ "content": "[MASK]",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": {
17
+ "content": "[PAD]",
18
+ "lstrip": false,
19
+ "normalized": false,
20
+ "rstrip": false,
21
+ "single_word": false
22
+ },
23
+ "sep_token": {
24
+ "content": "[SEP]",
25
+ "lstrip": false,
26
+ "normalized": false,
27
+ "rstrip": false,
28
+ "single_word": false
29
+ },
30
+ "unk_token": {
31
+ "content": "[UNK]",
32
+ "lstrip": false,
33
+ "normalized": false,
34
+ "rstrip": false,
35
+ "single_word": false
36
+ }
37
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "additional_special_tokens": [],
45
+ "apply_ocr": false,
46
+ "clean_up_tokenization_spaces": true,
47
+ "cls_token": "[CLS]",
48
+ "cls_token_box": [
49
+ 0,
50
+ 0,
51
+ 0,
52
+ 0
53
+ ],
54
+ "do_basic_tokenize": true,
55
+ "do_lower_case": true,
56
+ "mask_token": "[MASK]",
57
+ "model_max_length": 512,
58
+ "never_split": null,
59
+ "only_label_first_subword": true,
60
+ "pad_token": "[PAD]",
61
+ "pad_token_box": [
62
+ 0,
63
+ 0,
64
+ 0,
65
+ 0
66
+ ],
67
+ "pad_token_label": -100,
68
+ "processor_class": "LayoutLMv2Processor",
69
+ "sep_token": "[SEP]",
70
+ "sep_token_box": [
71
+ 1000,
72
+ 1000,
73
+ 1000,
74
+ 1000
75
+ ],
76
+ "strip_accents": null,
77
+ "tokenize_chinese_chars": true,
78
+ "tokenizer_class": "LayoutLMv2Tokenizer",
79
+ "unk_token": "[UNK]"
80
+ }
vocab.txt ADDED
The diff for this file is too large to render. See raw diff