sachin18 commited on
Commit
4dfa76b
1 Parent(s): ec05879

End of training

Browse files
README.md CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
- - Loss: 0.7085
21
- - Answer: {'precision': 0.721081081081081, 'recall': 0.8244746600741656, 'f1': 0.7693194925028833, 'number': 809}
22
- - Header: {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119}
23
- - Question: {'precision': 0.7871772039180766, 'recall': 0.8300469483568075, 'f1': 0.8080438756855575, 'number': 1065}
24
- - Overall Precision: 0.7328
25
- - Overall Recall: 0.7983
26
- - Overall F1: 0.7642
27
- - Overall Accuracy: 0.8112
28
 
29
  ## Model description
30
 
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
54
 
55
  ### Training results
56
 
57
- | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
- |:-------------:|:-----:|:----:|:---------------:|:------------------------------------------------------------------------------------------------------------:|:--------------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
- | 1.792 | 1.0 | 10 | 1.5932 | {'precision': 0.03648648648648649, 'recall': 0.03337453646477132, 'f1': 0.034861200774693346, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.3541114058355438, 'recall': 0.2507042253521127, 'f1': 0.29356789444749865, 'number': 1065} | 0.1968 | 0.1475 | 0.1686 | 0.3760 |
60
- | 1.4339 | 2.0 | 20 | 1.2410 | {'precision': 0.2177121771217712, 'recall': 0.21878862793572312, 'f1': 0.218249075215783, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.43688639551192143, 'recall': 0.5849765258215962, 'f1': 0.5002007226013649, 'number': 1065} | 0.3573 | 0.4014 | 0.3781 | 0.5877 |
61
- | 1.0937 | 3.0 | 30 | 0.9505 | {'precision': 0.45005149330587024, 'recall': 0.5401730531520396, 'f1': 0.4910112359550562, 'number': 809} | {'precision': 0.045454545454545456, 'recall': 0.008403361344537815, 'f1': 0.014184397163120567, 'number': 119} | {'precision': 0.6046141607000796, 'recall': 0.7136150234741784, 'f1': 0.6546080964685616, 'number': 1065} | 0.5324 | 0.6011 | 0.5647 | 0.7057 |
62
- | 0.835 | 4.0 | 40 | 0.7870 | {'precision': 0.6255274261603375, 'recall': 0.7330037082818294, 'f1': 0.6750142287990893, 'number': 809} | {'precision': 0.19298245614035087, 'recall': 0.09243697478991597, 'f1': 0.125, 'number': 119} | {'precision': 0.6779220779220779, 'recall': 0.7352112676056338, 'f1': 0.7054054054054054, 'number': 1065} | 0.6421 | 0.6959 | 0.6680 | 0.7601 |
63
- | 0.6644 | 5.0 | 50 | 0.7063 | {'precision': 0.6771739130434783, 'recall': 0.7700865265760197, 'f1': 0.7206477732793521, 'number': 809} | {'precision': 0.2857142857142857, 'recall': 0.2184873949579832, 'f1': 0.24761904761904763, 'number': 119} | {'precision': 0.6783161239078633, 'recall': 0.8018779342723005, 'f1': 0.7349397590361446, 'number': 1065} | 0.6621 | 0.7541 | 0.7051 | 0.7872 |
64
- | 0.5612 | 6.0 | 60 | 0.6880 | {'precision': 0.6639593908629442, 'recall': 0.8084054388133498, 'f1': 0.7290969899665551, 'number': 809} | {'precision': 0.26262626262626265, 'recall': 0.2184873949579832, 'f1': 0.23853211009174313, 'number': 119} | {'precision': 0.7401229148375769, 'recall': 0.7915492957746478, 'f1': 0.76497277676951, 'number': 1065} | 0.6851 | 0.7642 | 0.7225 | 0.7937 |
65
- | 0.4819 | 7.0 | 70 | 0.6610 | {'precision': 0.6937697993664202, 'recall': 0.8121137206427689, 'f1': 0.7482915717539863, 'number': 809} | {'precision': 0.30097087378640774, 'recall': 0.2605042016806723, 'f1': 0.27927927927927926, 'number': 119} | {'precision': 0.7568766637089619, 'recall': 0.8009389671361502, 'f1': 0.7782846715328468, 'number': 1065} | 0.7079 | 0.7732 | 0.7391 | 0.8034 |
66
- | 0.4299 | 8.0 | 80 | 0.6725 | {'precision': 0.6850152905198776, 'recall': 0.830655129789864, 'f1': 0.7508379888268155, 'number': 809} | {'precision': 0.2803738317757009, 'recall': 0.25210084033613445, 'f1': 0.2654867256637167, 'number': 119} | {'precision': 0.7534364261168385, 'recall': 0.8234741784037559, 'f1': 0.7868999551368328, 'number': 1065} | 0.7012 | 0.7923 | 0.7439 | 0.7950 |
67
- | 0.3801 | 9.0 | 90 | 0.6654 | {'precision': 0.7142857142857143, 'recall': 0.8158220024721878, 'f1': 0.7616849394114252, 'number': 809} | {'precision': 0.3047619047619048, 'recall': 0.2689075630252101, 'f1': 0.28571428571428575, 'number': 119} | {'precision': 0.7697715289982425, 'recall': 0.8225352112676056, 'f1': 0.7952791647753064, 'number': 1065} | 0.7236 | 0.7868 | 0.7538 | 0.8092 |
68
- | 0.3757 | 10.0 | 100 | 0.6709 | {'precision': 0.7082452431289641, 'recall': 0.8281829419035847, 'f1': 0.7635327635327636, 'number': 809} | {'precision': 0.34, 'recall': 0.2857142857142857, 'f1': 0.31050228310502287, 'number': 119} | {'precision': 0.7769028871391076, 'recall': 0.8338028169014085, 'f1': 0.8043478260869565, 'number': 1065} | 0.7273 | 0.7988 | 0.7614 | 0.8145 |
69
- | 0.3165 | 11.0 | 110 | 0.6781 | {'precision': 0.723726977248104, 'recall': 0.8257107540173053, 'f1': 0.7713625866050808, 'number': 809} | {'precision': 0.3046875, 'recall': 0.3277310924369748, 'f1': 0.31578947368421056, 'number': 119} | {'precision': 0.7736842105263158, 'recall': 0.828169014084507, 'f1': 0.7999999999999999, 'number': 1065} | 0.7252 | 0.7973 | 0.7596 | 0.8077 |
70
- | 0.2993 | 12.0 | 120 | 0.6894 | {'precision': 0.71875, 'recall': 0.8244746600741656, 'f1': 0.7679907887161773, 'number': 809} | {'precision': 0.3247863247863248, 'recall': 0.31932773109243695, 'f1': 0.3220338983050848, 'number': 119} | {'precision': 0.7823008849557522, 'recall': 0.8300469483568075, 'f1': 0.8054669703872438, 'number': 1065} | 0.7306 | 0.7973 | 0.7625 | 0.8117 |
71
- | 0.2822 | 13.0 | 130 | 0.7039 | {'precision': 0.7195652173913043, 'recall': 0.8182941903584673, 'f1': 0.7657605552342395, 'number': 809} | {'precision': 0.3125, 'recall': 0.33613445378151263, 'f1': 0.3238866396761134, 'number': 119} | {'precision': 0.7823008849557522, 'recall': 0.8300469483568075, 'f1': 0.8054669703872438, 'number': 1065} | 0.7282 | 0.7958 | 0.7605 | 0.8095 |
72
- | 0.2595 | 14.0 | 140 | 0.7045 | {'precision': 0.72, 'recall': 0.823238566131026, 'f1': 0.7681660899653979, 'number': 809} | {'precision': 0.3418803418803419, 'recall': 0.33613445378151263, 'f1': 0.3389830508474576, 'number': 119} | {'precision': 0.7912578055307761, 'recall': 0.8328638497652582, 'f1': 0.8115279048490394, 'number': 1065} | 0.7365 | 0.7993 | 0.7666 | 0.8118 |
73
- | 0.2617 | 15.0 | 150 | 0.7085 | {'precision': 0.721081081081081, 'recall': 0.8244746600741656, 'f1': 0.7693194925028833, 'number': 809} | {'precision': 0.3252032520325203, 'recall': 0.33613445378151263, 'f1': 0.3305785123966942, 'number': 119} | {'precision': 0.7871772039180766, 'recall': 0.8300469483568075, 'f1': 0.8080438756855575, 'number': 1065} | 0.7328 | 0.7983 | 0.7642 | 0.8112 |
74
 
75
 
76
  ### Framework versions
 
17
 
18
  This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
19
  It achieves the following results on the evaluation set:
20
+ - Loss: 0.6806
21
+ - Answer: {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809}
22
+ - Header: {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119}
23
+ - Question: {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065}
24
+ - Overall Precision: 0.7323
25
+ - Overall Recall: 0.7837
26
+ - Overall F1: 0.7571
27
+ - Overall Accuracy: 0.8125
28
 
29
  ## Model description
30
 
 
54
 
55
  ### Training results
56
 
57
+ | Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
58
+ |:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
59
+ | 1.7526 | 1.0 | 10 | 1.5590 | {'precision': 0.032426778242677826, 'recall': 0.038318912237330034, 'f1': 0.03512747875354107, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23852295409181637, 'recall': 0.2244131455399061, 'f1': 0.2312530237058539, 'number': 1065} | 0.1379 | 0.1355 | 0.1367 | 0.3812 |
60
+ | 1.4179 | 2.0 | 20 | 1.2477 | {'precision': 0.16770186335403728, 'recall': 0.1668726823238566, 'f1': 0.16728624535315983, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4325309992706054, 'recall': 0.5568075117370892, 'f1': 0.486863711001642, 'number': 1065} | 0.3343 | 0.3653 | 0.3491 | 0.5813 |
61
+ | 1.0864 | 3.0 | 30 | 0.9440 | {'precision': 0.5470383275261324, 'recall': 0.5822002472187886, 'f1': 0.5640718562874251, 'number': 809} | {'precision': 0.0425531914893617, 'recall': 0.01680672268907563, 'f1': 0.024096385542168672, 'number': 119} | {'precision': 0.5717665615141956, 'recall': 0.6807511737089202, 'f1': 0.6215173596228033, 'number': 1065} | 0.5506 | 0.6011 | 0.5747 | 0.7225 |
62
+ | 0.8353 | 4.0 | 40 | 0.7733 | {'precision': 0.5964360587002097, 'recall': 0.7033374536464772, 'f1': 0.6454906409529211, 'number': 809} | {'precision': 0.19718309859154928, 'recall': 0.11764705882352941, 'f1': 0.14736842105263157, 'number': 119} | {'precision': 0.654468085106383, 'recall': 0.7220657276995305, 'f1': 0.6866071428571429, 'number': 1065} | 0.6145 | 0.6784 | 0.6449 | 0.7634 |
63
+ | 0.6716 | 5.0 | 50 | 0.7154 | {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} | {'precision': 0.24210526315789474, 'recall': 0.19327731092436976, 'f1': 0.2149532710280374, 'number': 119} | {'precision': 0.6755663430420712, 'recall': 0.784037558685446, 'f1': 0.7257714037375055, 'number': 1065} | 0.6384 | 0.7220 | 0.6777 | 0.7796 |
64
+ | 0.5748 | 6.0 | 60 | 0.6924 | {'precision': 0.6378269617706237, 'recall': 0.7836835599505563, 'f1': 0.7032723239046034, 'number': 809} | {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} | {'precision': 0.7334558823529411, 'recall': 0.7492957746478873, 'f1': 0.7412912215513237, 'number': 1065} | 0.6748 | 0.7331 | 0.7027 | 0.7798 |
65
+ | 0.5 | 7.0 | 70 | 0.6652 | {'precision': 0.665258711721225, 'recall': 0.7787391841779975, 'f1': 0.7175398633257404, 'number': 809} | {'precision': 0.2641509433962264, 'recall': 0.23529411764705882, 'f1': 0.24888888888888888, 'number': 119} | {'precision': 0.7253218884120172, 'recall': 0.7934272300469484, 'f1': 0.7578475336322871, 'number': 1065} | 0.6776 | 0.7541 | 0.7138 | 0.7942 |
66
+ | 0.4449 | 8.0 | 80 | 0.6592 | {'precision': 0.6754201680672269, 'recall': 0.7948084054388134, 'f1': 0.730266893810335, 'number': 809} | {'precision': 0.25862068965517243, 'recall': 0.25210084033613445, 'f1': 0.25531914893617025, 'number': 119} | {'precision': 0.7574692442882249, 'recall': 0.8093896713615023, 'f1': 0.7825692237857468, 'number': 1065} | 0.6958 | 0.7702 | 0.7311 | 0.8050 |
67
+ | 0.3916 | 9.0 | 90 | 0.6470 | {'precision': 0.7090301003344481, 'recall': 0.7861557478368356, 'f1': 0.7456037514654162, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.762071992976295, 'recall': 0.8150234741784037, 'f1': 0.7876588021778583, 'number': 1065} | 0.7163 | 0.7727 | 0.7434 | 0.8102 |
68
+ | 0.3807 | 10.0 | 100 | 0.6552 | {'precision': 0.6869009584664537, 'recall': 0.7972805933250927, 'f1': 0.7379862700228833, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7832422586520947, 'recall': 0.8075117370892019, 'f1': 0.7951918631530283, 'number': 1065} | 0.7160 | 0.7717 | 0.7428 | 0.8129 |
69
+ | 0.328 | 11.0 | 110 | 0.6710 | {'precision': 0.7014428412874584, 'recall': 0.7812113720642769, 'f1': 0.7391812865497076, 'number': 809} | {'precision': 0.3037037037037037, 'recall': 0.3445378151260504, 'f1': 0.3228346456692913, 'number': 119} | {'precision': 0.7671589921807124, 'recall': 0.8291079812206573, 'f1': 0.7969314079422383, 'number': 1065} | 0.7115 | 0.7807 | 0.7445 | 0.8076 |
70
+ | 0.3111 | 12.0 | 120 | 0.6772 | {'precision': 0.6972972972972973, 'recall': 0.7972805933250927, 'f1': 0.7439446366782007, 'number': 809} | {'precision': 0.34234234234234234, 'recall': 0.31932773109243695, 'f1': 0.33043478260869563, 'number': 119} | {'precision': 0.801477377654663, 'recall': 0.8150234741784037, 'f1': 0.8081936685288641, 'number': 1065} | 0.7319 | 0.7782 | 0.7544 | 0.8120 |
71
+ | 0.2936 | 13.0 | 130 | 0.6751 | {'precision': 0.7136563876651982, 'recall': 0.8009888751545118, 'f1': 0.7548048922539313, 'number': 809} | {'precision': 0.33858267716535434, 'recall': 0.36134453781512604, 'f1': 0.34959349593495936, 'number': 119} | {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065} | 0.7310 | 0.7908 | 0.7597 | 0.8126 |
72
+ | 0.2719 | 14.0 | 140 | 0.6794 | {'precision': 0.7081021087680355, 'recall': 0.788627935723115, 'f1': 0.7461988304093568, 'number': 809} | {'precision': 0.3524590163934426, 'recall': 0.36134453781512604, 'f1': 0.35684647302904565, 'number': 119} | {'precision': 0.794755877034358, 'recall': 0.8253521126760563, 'f1': 0.809765085214187, 'number': 1065} | 0.7327 | 0.7827 | 0.7569 | 0.8116 |
73
+ | 0.2776 | 15.0 | 150 | 0.6806 | {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809} | {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119} | {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065} | 0.7323 | 0.7837 | 0.7571 | 0.8125 |
74
 
75
 
76
  ### Framework versions
logs/events.out.tfevents.1717253099.280ef54c6982.7237.0 CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:154fc6617bbec756a2266267eee0ba8f679eae5e1745e266664faa23d8b35426
3
- size 14915
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5880e5cd684b297efd4d420ad7d6b84f92a16d25ead4018732aefc771328df38
3
+ size 15984
model.safetensors CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:6ff8ae1293df3c9764c5cd00d02a8e219c1b4945176d3316062e668535dfccb9
3
  size 450558212
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9fb81bd2041dc58f8027bf0e94cdbe26e8941a67198a612adb3540190fcdc0e9
3
  size 450558212
tokenizer.json CHANGED
@@ -1,21 +1,7 @@
1
  {
2
  "version": "1.0",
3
- "truncation": {
4
- "direction": "Right",
5
- "max_length": 512,
6
- "strategy": "LongestFirst",
7
- "stride": 0
8
- },
9
- "padding": {
10
- "strategy": {
11
- "Fixed": 512
12
- },
13
- "direction": "Right",
14
- "pad_to_multiple_of": null,
15
- "pad_id": 0,
16
- "pad_type_id": 0,
17
- "pad_token": "[PAD]"
18
- },
19
  "added_tokens": [
20
  {
21
  "id": 0,
 
1
  {
2
  "version": "1.0",
3
+ "truncation": null,
4
+ "padding": null,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5
  "added_tokens": [
6
  {
7
  "id": 0,