End of training
Browse files- README.md +25 -25
- logs/events.out.tfevents.1717253099.280ef54c6982.7237.0 +2 -2
- model.safetensors +1 -1
- tokenizer.json +2 -16
README.md
CHANGED
@@ -17,14 +17,14 @@ should probably proofread and complete it, then remove this comment. -->
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
-
- Loss: 0.
|
21 |
-
- Answer: {'precision': 0.
|
22 |
-
- Header: {'precision': 0.
|
23 |
-
- Question: {'precision': 0.
|
24 |
-
- Overall Precision: 0.
|
25 |
-
- Overall Recall: 0.
|
26 |
-
- Overall F1: 0.
|
27 |
-
- Overall Accuracy: 0.
|
28 |
|
29 |
## Model description
|
30 |
|
@@ -54,23 +54,23 @@ The following hyperparameters were used during training:
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
-
| Training Loss | Epoch | Step | Validation Loss | Answer
|
58 |
-
|
59 |
-
| 1.
|
60 |
-
| 1.
|
61 |
-
| 1.
|
62 |
-
| 0.
|
63 |
-
| 0.
|
64 |
-
| 0.
|
65 |
-
| 0.
|
66 |
-
| 0.
|
67 |
-
| 0.
|
68 |
-
| 0.
|
69 |
-
| 0.
|
70 |
-
| 0.
|
71 |
-
| 0.
|
72 |
-
| 0.
|
73 |
-
| 0.
|
74 |
|
75 |
|
76 |
### Framework versions
|
|
|
17 |
|
18 |
This model is a fine-tuned version of [microsoft/layoutlm-base-uncased](https://huggingface.co/microsoft/layoutlm-base-uncased) on the funsd dataset.
|
19 |
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.6806
|
21 |
+
- Answer: {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809}
|
22 |
+
- Header: {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119}
|
23 |
+
- Question: {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065}
|
24 |
+
- Overall Precision: 0.7323
|
25 |
+
- Overall Recall: 0.7837
|
26 |
+
- Overall F1: 0.7571
|
27 |
+
- Overall Accuracy: 0.8125
|
28 |
|
29 |
## Model description
|
30 |
|
|
|
54 |
|
55 |
### Training results
|
56 |
|
57 |
+
| Training Loss | Epoch | Step | Validation Loss | Answer | Header | Question | Overall Precision | Overall Recall | Overall F1 | Overall Accuracy |
|
58 |
+
|:-------------:|:-----:|:----:|:---------------:|:-------------------------------------------------------------------------------------------------------------:|:-----------------------------------------------------------------------------------------------------------:|:----------------------------------------------------------------------------------------------------------:|:-----------------:|:--------------:|:----------:|:----------------:|
|
59 |
+
| 1.7526 | 1.0 | 10 | 1.5590 | {'precision': 0.032426778242677826, 'recall': 0.038318912237330034, 'f1': 0.03512747875354107, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.23852295409181637, 'recall': 0.2244131455399061, 'f1': 0.2312530237058539, 'number': 1065} | 0.1379 | 0.1355 | 0.1367 | 0.3812 |
|
60 |
+
| 1.4179 | 2.0 | 20 | 1.2477 | {'precision': 0.16770186335403728, 'recall': 0.1668726823238566, 'f1': 0.16728624535315983, 'number': 809} | {'precision': 0.0, 'recall': 0.0, 'f1': 0.0, 'number': 119} | {'precision': 0.4325309992706054, 'recall': 0.5568075117370892, 'f1': 0.486863711001642, 'number': 1065} | 0.3343 | 0.3653 | 0.3491 | 0.5813 |
|
61 |
+
| 1.0864 | 3.0 | 30 | 0.9440 | {'precision': 0.5470383275261324, 'recall': 0.5822002472187886, 'f1': 0.5640718562874251, 'number': 809} | {'precision': 0.0425531914893617, 'recall': 0.01680672268907563, 'f1': 0.024096385542168672, 'number': 119} | {'precision': 0.5717665615141956, 'recall': 0.6807511737089202, 'f1': 0.6215173596228033, 'number': 1065} | 0.5506 | 0.6011 | 0.5747 | 0.7225 |
|
62 |
+
| 0.8353 | 4.0 | 40 | 0.7733 | {'precision': 0.5964360587002097, 'recall': 0.7033374536464772, 'f1': 0.6454906409529211, 'number': 809} | {'precision': 0.19718309859154928, 'recall': 0.11764705882352941, 'f1': 0.14736842105263157, 'number': 119} | {'precision': 0.654468085106383, 'recall': 0.7220657276995305, 'f1': 0.6866071428571429, 'number': 1065} | 0.6145 | 0.6784 | 0.6449 | 0.7634 |
|
63 |
+
| 0.6716 | 5.0 | 50 | 0.7154 | {'precision': 0.6294691224268689, 'recall': 0.7181705809641533, 'f1': 0.6709006928406466, 'number': 809} | {'precision': 0.24210526315789474, 'recall': 0.19327731092436976, 'f1': 0.2149532710280374, 'number': 119} | {'precision': 0.6755663430420712, 'recall': 0.784037558685446, 'f1': 0.7257714037375055, 'number': 1065} | 0.6384 | 0.7220 | 0.6777 | 0.7796 |
|
64 |
+
| 0.5748 | 6.0 | 60 | 0.6924 | {'precision': 0.6378269617706237, 'recall': 0.7836835599505563, 'f1': 0.7032723239046034, 'number': 809} | {'precision': 0.3493975903614458, 'recall': 0.24369747899159663, 'f1': 0.2871287128712871, 'number': 119} | {'precision': 0.7334558823529411, 'recall': 0.7492957746478873, 'f1': 0.7412912215513237, 'number': 1065} | 0.6748 | 0.7331 | 0.7027 | 0.7798 |
|
65 |
+
| 0.5 | 7.0 | 70 | 0.6652 | {'precision': 0.665258711721225, 'recall': 0.7787391841779975, 'f1': 0.7175398633257404, 'number': 809} | {'precision': 0.2641509433962264, 'recall': 0.23529411764705882, 'f1': 0.24888888888888888, 'number': 119} | {'precision': 0.7253218884120172, 'recall': 0.7934272300469484, 'f1': 0.7578475336322871, 'number': 1065} | 0.6776 | 0.7541 | 0.7138 | 0.7942 |
|
66 |
+
| 0.4449 | 8.0 | 80 | 0.6592 | {'precision': 0.6754201680672269, 'recall': 0.7948084054388134, 'f1': 0.730266893810335, 'number': 809} | {'precision': 0.25862068965517243, 'recall': 0.25210084033613445, 'f1': 0.25531914893617025, 'number': 119} | {'precision': 0.7574692442882249, 'recall': 0.8093896713615023, 'f1': 0.7825692237857468, 'number': 1065} | 0.6958 | 0.7702 | 0.7311 | 0.8050 |
|
67 |
+
| 0.3916 | 9.0 | 90 | 0.6470 | {'precision': 0.7090301003344481, 'recall': 0.7861557478368356, 'f1': 0.7456037514654162, 'number': 809} | {'precision': 0.3157894736842105, 'recall': 0.3025210084033613, 'f1': 0.30901287553648066, 'number': 119} | {'precision': 0.762071992976295, 'recall': 0.8150234741784037, 'f1': 0.7876588021778583, 'number': 1065} | 0.7163 | 0.7727 | 0.7434 | 0.8102 |
|
68 |
+
| 0.3807 | 10.0 | 100 | 0.6552 | {'precision': 0.6869009584664537, 'recall': 0.7972805933250927, 'f1': 0.7379862700228833, 'number': 809} | {'precision': 0.2972972972972973, 'recall': 0.2773109243697479, 'f1': 0.28695652173913044, 'number': 119} | {'precision': 0.7832422586520947, 'recall': 0.8075117370892019, 'f1': 0.7951918631530283, 'number': 1065} | 0.7160 | 0.7717 | 0.7428 | 0.8129 |
|
69 |
+
| 0.328 | 11.0 | 110 | 0.6710 | {'precision': 0.7014428412874584, 'recall': 0.7812113720642769, 'f1': 0.7391812865497076, 'number': 809} | {'precision': 0.3037037037037037, 'recall': 0.3445378151260504, 'f1': 0.3228346456692913, 'number': 119} | {'precision': 0.7671589921807124, 'recall': 0.8291079812206573, 'f1': 0.7969314079422383, 'number': 1065} | 0.7115 | 0.7807 | 0.7445 | 0.8076 |
|
70 |
+
| 0.3111 | 12.0 | 120 | 0.6772 | {'precision': 0.6972972972972973, 'recall': 0.7972805933250927, 'f1': 0.7439446366782007, 'number': 809} | {'precision': 0.34234234234234234, 'recall': 0.31932773109243695, 'f1': 0.33043478260869563, 'number': 119} | {'precision': 0.801477377654663, 'recall': 0.8150234741784037, 'f1': 0.8081936685288641, 'number': 1065} | 0.7319 | 0.7782 | 0.7544 | 0.8120 |
|
71 |
+
| 0.2936 | 13.0 | 130 | 0.6751 | {'precision': 0.7136563876651982, 'recall': 0.8009888751545118, 'f1': 0.7548048922539313, 'number': 809} | {'precision': 0.33858267716535434, 'recall': 0.36134453781512604, 'f1': 0.34959349593495936, 'number': 119} | {'precision': 0.7894736842105263, 'recall': 0.8309859154929577, 'f1': 0.8096980786825252, 'number': 1065} | 0.7310 | 0.7908 | 0.7597 | 0.8126 |
|
72 |
+
| 0.2719 | 14.0 | 140 | 0.6794 | {'precision': 0.7081021087680355, 'recall': 0.788627935723115, 'f1': 0.7461988304093568, 'number': 809} | {'precision': 0.3524590163934426, 'recall': 0.36134453781512604, 'f1': 0.35684647302904565, 'number': 119} | {'precision': 0.794755877034358, 'recall': 0.8253521126760563, 'f1': 0.809765085214187, 'number': 1065} | 0.7327 | 0.7827 | 0.7569 | 0.8116 |
|
73 |
+
| 0.2776 | 15.0 | 150 | 0.6806 | {'precision': 0.709211986681465, 'recall': 0.7898640296662547, 'f1': 0.7473684210526316, 'number': 809} | {'precision': 0.35537190082644626, 'recall': 0.36134453781512604, 'f1': 0.3583333333333333, 'number': 119} | {'precision': 0.7920792079207921, 'recall': 0.8262910798122066, 'f1': 0.8088235294117647, 'number': 1065} | 0.7323 | 0.7837 | 0.7571 | 0.8125 |
|
74 |
|
75 |
|
76 |
### Framework versions
|
logs/events.out.tfevents.1717253099.280ef54c6982.7237.0
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:5880e5cd684b297efd4d420ad7d6b84f92a16d25ead4018732aefc771328df38
|
3 |
+
size 15984
|
model.safetensors
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 450558212
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9fb81bd2041dc58f8027bf0e94cdbe26e8941a67198a612adb3540190fcdc0e9
|
3 |
size 450558212
|
tokenizer.json
CHANGED
@@ -1,21 +1,7 @@
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
-
"truncation":
|
4 |
-
|
5 |
-
"max_length": 512,
|
6 |
-
"strategy": "LongestFirst",
|
7 |
-
"stride": 0
|
8 |
-
},
|
9 |
-
"padding": {
|
10 |
-
"strategy": {
|
11 |
-
"Fixed": 512
|
12 |
-
},
|
13 |
-
"direction": "Right",
|
14 |
-
"pad_to_multiple_of": null,
|
15 |
-
"pad_id": 0,
|
16 |
-
"pad_type_id": 0,
|
17 |
-
"pad_token": "[PAD]"
|
18 |
-
},
|
19 |
"added_tokens": [
|
20 |
{
|
21 |
"id": 0,
|
|
|
1 |
{
|
2 |
"version": "1.0",
|
3 |
+
"truncation": null,
|
4 |
+
"padding": null,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
"added_tokens": [
|
6 |
{
|
7 |
"id": 0,
|