s6anripk commited on
Commit
3574f9d
1 Parent(s): e1c80c4

07.24.2024_18:42:18_BLOrigEnv_1/best_model_curr_step_1 Commit: 2a1117cccb556e694db1fb207a67de8ebb4d2e69/ Branch: b'main\n'

Browse files
README.md CHANGED
@@ -1,37 +1,37 @@
1
- ---
2
- library_name: stable-baselines3
3
- tags:
4
- - KimHerEnv
5
- - deep-reinforcement-learning
6
- - reinforcement-learning
7
- - stable-baselines3
8
- model-index:
9
- - name: HER
10
- results:
11
- - task:
12
- type: reinforcement-learning
13
- name: reinforcement-learning
14
- dataset:
15
- name: KimHerEnv
16
- type: KimHerEnv
17
- metrics:
18
- - type: mean_reward
19
- value: -5.00 +/- 0.00
20
- name: mean_reward
21
- verified: false
22
- ---
23
-
24
- # **HER** Agent playing **KimHerEnv**
25
- This is a trained model of a **HER** agent playing **KimHerEnv**
26
- using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
-
28
- ## Usage (with Stable-baselines3)
29
- TODO: Add your code
30
-
31
-
32
- ```python
33
- from stable_baselines3 import ...
34
- from huggingface_sb3 import load_from_hub
35
-
36
- ...
37
- ```
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - BLAdapEnv
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: HER
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: BLAdapEnv
16
+ type: BLAdapEnv
17
+ metrics:
18
+ - type: mean_reward
19
+ value: -6.00 +/- 0.00
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **HER** Agent playing **BLAdapEnv**
25
+ This is a trained model of a **HER** agent playing **BLAdapEnv**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json CHANGED
@@ -1 +1 @@
1
- {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f26211b5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26211b3d00>"}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256, 256], "n_critics": 1}, "num_timesteps": 100, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": 188156, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>", ":serialized:": "gAWVUwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAAC4HoXrUbi+P7gehetRuL4/uB6F61G4vj+4HoXrUbi+P5RoDIwCZjiUiYiHlFKUKEsDaBBOTk5K/////0r/////SwB0lGJLBIWUaBN0lFKUjAZfZHR5cGWUaAqMB2Zsb2F0MzKUk5R1Yi4=", "_mu": "[0 0 0 0]", "_sigma": "[0.12 0.12 0.12 0.12]", "_dtype": "<class 'numpy.float32'>"}, "start_time": 1720265267844753897, "learning_rate": 0.0001, "tensorboard_log": "tensorboard_logs/KimHerEnv", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_episode_num": 20, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgAIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBQAAAAAAACMAWyUSwWMAXSURz/44HX2/SH/dX2UKGgGR8AUAAAAAAAAaAdLBWgIRz/+YybhFVkudX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ABqX8fms/6dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AD8Dr7fpEAdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AHIuoP07KadX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AJ9FUhmoR7dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ANZ2dNFjNIdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0APoumJm/WUdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ARgZxaPjn3dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ATbGBFuvU0dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AUSLDQ7cO9dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AVhXA/LTx5dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AXNHOKO1fFdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AYOIxgy/KydX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AZkmeDnNgSdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AaxDTjNpuddX2UKGgGR8AUAAAAAAAAaAdLBWgIR0Ac6rDIikftdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0Ad6QLeANG3dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AfQ5imVJL/dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AgU5HVf/m1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJZS4="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=", "spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVaQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDmy1dvDPNhBCrNmKxzSnNdjANpbmOUihBnIv4gZwgPDqbmwNyJmNxldYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[0. 0. 0. 0.]", "high": "[1. 1. 1. 1.]", "low_repr": "0.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.95, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==", "__module__": "helpers.CustomHerReplayBuffer", "add": "<function CustomHerReplayBuffer.add at 0x7f262104e9e0>", "__doc__": null, "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2621057a80>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future", "copy_info_dict": true}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3VzZXIvcmlwa2VhMS8udmlydHVhbGVudnMvc2FuZC1neW0vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS91c2VyL3JpcGtlYTEvLnZpcnR1YWxlbnZzL3NhbmQtZ3ltL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-105-generic-x86_64-with-glibc2.31 # 115~20.04.1-Ubuntu SMP Mon Apr 15 17:33:04 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.2.1", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x000002A2E02480D0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002A2E0245840>"}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256, 256], "n_critics": 1}, "num_timesteps": 4, "_total_timesteps": 4, "_num_timesteps_at_start": 0, "seed": null, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>", ":serialized:": "gAWVQwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlIwGX3NpZ21hlGgIKJYgAAAAAAAAALgehetRuL4/uB6F61G4vj+4HoXrUbi+P7gehetRuL4/lGgMjAJmOJSJiIeUUpQoSwNoEE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==", "_mu": "[0 0 0 0]", "_sigma": "[0.12 0.12 0.12 0.12]", "_dtype": "<class 'numpy.float32'>"}, "start_time": 1721839338079973900, "learning_rate": 0.0001, "tensorboard_log": "tensorboard_logs\\BLOrigEnv", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.25, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=", "spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihFsgiZXrqlrgMusVEXHYvfiAIwDaW5jlIoRl4Pkqx5EN7dgdHO2O2AXwgB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[0. 0. 0. 0.]", "high": "[1. 1. 1. 1.]", "low_repr": "0.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==", "__module__": "helpers.CustomHerReplayBuffer", "add": "<function CustomHerReplayBuffer.add at 0x000002A2E02DF3A0>", "__doc__": null, "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002A2E02E2440>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future", "copy_info_dict": true}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjF1EOlxQeUNoYXJtIENvbW11bml0eSBFZGl0aW9uIDIwMTkuM1x2ZW52c1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaBwpUpSFlHSUUpRoImg8fZR9lChoGGgzaCWMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCd9lGgpTmgqTmgraBloLE5oLWgvRz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRF2UaEZ9lHWGlIZSMC4="}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.13", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
model.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:59e70aa16fe7f18ef82bd116d7b2edd5b1a219bbc6934a56f4bc828845692766
3
+ size 14740268
model/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 2.3.2
model/actor.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07eff6581ac8bba041a58c895861efeb6d12a5d0145cfd0380efee25082f2ff9
3
+ size 1120
model/critic.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:07eff6581ac8bba041a58c895861efeb6d12a5d0145cfd0380efee25082f2ff9
3
+ size 1120
model/data ADDED
@@ -0,0 +1,121 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
5
+ "__module__": "stable_baselines3.td3.policies",
6
+ "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
7
+ "__init__": "<function MultiInputPolicy.__init__ at 0x000002A2E02480D0>",
8
+ "__abstractmethods__": "frozenset()",
9
+ "_abc_impl": "<_abc._abc_data object at 0x000002A2E0245840>"
10
+ },
11
+ "verbose": 0,
12
+ "policy_kwargs": {
13
+ "net_arch": [
14
+ 256,
15
+ 256,
16
+ 256
17
+ ],
18
+ "n_critics": 1
19
+ },
20
+ "num_timesteps": 4,
21
+ "_total_timesteps": 4,
22
+ "_num_timesteps_at_start": 0,
23
+ "seed": null,
24
+ "action_noise": {
25
+ ":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
26
+ ":serialized:": "gAWVQwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlIwGX3NpZ21hlGgIKJYgAAAAAAAAALgehetRuL4/uB6F61G4vj+4HoXrUbi+P7gehetRuL4/lGgMjAJmOJSJiIeUUpQoSwNoEE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==",
27
+ "_mu": "[0 0 0 0]",
28
+ "_sigma": "[0.12 0.12 0.12 0.12]",
29
+ "_dtype": "<class 'numpy.float32'>"
30
+ },
31
+ "start_time": 1721839338079973900,
32
+ "learning_rate": 0.0001,
33
+ "tensorboard_log": "tensorboard_logs\\BLOrigEnv",
34
+ "_last_obs": null,
35
+ "_last_episode_starts": {
36
+ ":type:": "<class 'numpy.ndarray'>",
37
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
38
+ },
39
+ "_last_original_obs": {
40
+ ":type:": "<class 'collections.OrderedDict'>",
41
+ ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==",
42
+ "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
43
+ "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
44
+ "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"
45
+ },
46
+ "_episode_num": 0,
47
+ "use_sde": false,
48
+ "sde_sample_freq": -1,
49
+ "_current_progress_remaining": 0.25,
50
+ "_stats_window_size": 100,
51
+ "ep_info_buffer": {
52
+ ":type:": "<class 'collections.deque'>",
53
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
54
+ },
55
+ "ep_success_buffer": {
56
+ ":type:": "<class 'collections.deque'>",
57
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
58
+ },
59
+ "_n_updates": 0,
60
+ "observation_space": {
61
+ ":type:": "<class 'gymnasium.spaces.dict.Dict'>",
62
+ ":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=",
63
+ "spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])",
64
+ "_shape": null,
65
+ "dtype": null,
66
+ "_np_random": null
67
+ },
68
+ "action_space": {
69
+ ":type:": "<class 'gymnasium.spaces.box.Box'>",
70
+ ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihFsgiZXrqlrgMusVEXHYvfiAIwDaW5jlIoRl4Pkqx5EN7dgdHO2O2AXwgB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
71
+ "dtype": "float32",
72
+ "bounded_below": "[ True True True True]",
73
+ "bounded_above": "[ True True True True]",
74
+ "_shape": [
75
+ 4
76
+ ],
77
+ "low": "[0. 0. 0. 0.]",
78
+ "high": "[1. 1. 1. 1.]",
79
+ "low_repr": "0.0",
80
+ "high_repr": "1.0",
81
+ "_np_random": "Generator(PCG64)"
82
+ },
83
+ "n_envs": 1,
84
+ "buffer_size": 1000000,
85
+ "batch_size": 256,
86
+ "learning_starts": 100,
87
+ "tau": 0.005,
88
+ "gamma": 0.95,
89
+ "gradient_steps": 1,
90
+ "optimize_memory_usage": false,
91
+ "replay_buffer_class": {
92
+ ":type:": "<class 'abc.ABCMeta'>",
93
+ ":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==",
94
+ "__module__": "helpers.CustomHerReplayBuffer",
95
+ "add": "<function CustomHerReplayBuffer.add at 0x000002A2E02DF3A0>",
96
+ "__doc__": null,
97
+ "__abstractmethods__": "frozenset()",
98
+ "_abc_impl": "<_abc._abc_data object at 0x000002A2E02E2440>"
99
+ },
100
+ "replay_buffer_kwargs": {
101
+ "n_sampled_goal": 4,
102
+ "goal_selection_strategy": "future",
103
+ "copy_info_dict": true
104
+ },
105
+ "train_freq": {
106
+ ":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
107
+ ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
108
+ },
109
+ "use_sde_at_warmup": false,
110
+ "policy_delay": 1,
111
+ "target_noise_clip": 0.0,
112
+ "target_policy_noise": 0.1,
113
+ "lr_schedule": {
114
+ ":type:": "<class 'function'>",
115
+ ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjF1EOlxQeUNoYXJtIENvbW11bml0eSBFZGl0aW9uIDIwMTkuM1x2ZW52c1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaBwpUpSFlHSUUpRoImg8fZR9lChoGGgzaCWMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCd9lGgpTmgqTmgraBloLE5oLWgvRz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRF2UaEZ9lHWGlIZSMC4="
116
+ },
117
+ "actor_batch_norm_stats": [],
118
+ "critic_batch_norm_stats": [],
119
+ "actor_batch_norm_stats_target": [],
120
+ "critic_batch_norm_stats_target": []
121
+ }
model/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4c691b64569539221bc219a1abf98483efeaaa25d88f59514adce0a0e839afaa
3
+ size 14722870
model/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
3
+ size 864
model/system_info.txt ADDED
@@ -0,0 +1,9 @@
 
 
 
 
 
 
 
 
 
 
1
+ - OS: Windows-10-10.0.19045-SP0 10.0.19045
2
+ - Python: 3.9.13
3
+ - Stable-Baselines3: 2.3.2
4
+ - PyTorch: 2.3.0+cpu
5
+ - GPU Enabled: False
6
+ - Numpy: 1.26.3
7
+ - Cloudpickle: 3.0.0
8
+ - Gymnasium: 0.29.1
9
+ - OpenAI Gym: 0.26.2
results.json CHANGED
@@ -1 +1 @@
1
- {"mean_reward": -5.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2024-07-06T13:27:55.936198"}
 
1
+ {"mean_reward": -6.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 26, "eval_datetime": "2024-07-24T18:49:16.878720"}