07.24.2024_18:42:18_BLOrigEnv_1/best_model_curr_step_1 Commit: 2a1117cccb556e694db1fb207a67de8ebb4d2e69/ Branch: b'main\n'
Browse files- README.md +37 -37
- config.json +1 -1
- model.zip +3 -0
- model/_stable_baselines3_version +1 -0
- model/actor.optimizer.pth +3 -0
- model/critic.optimizer.pth +3 -0
- model/data +121 -0
- model/policy.pth +3 -0
- model/pytorch_variables.pth +3 -0
- model/system_info.txt +9 -0
- results.json +1 -1
README.md
CHANGED
@@ -1,37 +1,37 @@
|
|
1 |
-
---
|
2 |
-
library_name: stable-baselines3
|
3 |
-
tags:
|
4 |
-
-
|
5 |
-
- deep-reinforcement-learning
|
6 |
-
- reinforcement-learning
|
7 |
-
- stable-baselines3
|
8 |
-
model-index:
|
9 |
-
- name: HER
|
10 |
-
results:
|
11 |
-
- task:
|
12 |
-
type: reinforcement-learning
|
13 |
-
name: reinforcement-learning
|
14 |
-
dataset:
|
15 |
-
name:
|
16 |
-
type:
|
17 |
-
metrics:
|
18 |
-
- type: mean_reward
|
19 |
-
value: -
|
20 |
-
name: mean_reward
|
21 |
-
verified: false
|
22 |
-
---
|
23 |
-
|
24 |
-
# **HER** Agent playing **
|
25 |
-
This is a trained model of a **HER** agent playing **
|
26 |
-
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
-
|
28 |
-
## Usage (with Stable-baselines3)
|
29 |
-
TODO: Add your code
|
30 |
-
|
31 |
-
|
32 |
-
```python
|
33 |
-
from stable_baselines3 import ...
|
34 |
-
from huggingface_sb3 import load_from_hub
|
35 |
-
|
36 |
-
...
|
37 |
-
```
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- BLAdapEnv
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: HER
|
10 |
+
results:
|
11 |
+
- task:
|
12 |
+
type: reinforcement-learning
|
13 |
+
name: reinforcement-learning
|
14 |
+
dataset:
|
15 |
+
name: BLAdapEnv
|
16 |
+
type: BLAdapEnv
|
17 |
+
metrics:
|
18 |
+
- type: mean_reward
|
19 |
+
value: -6.00 +/- 0.00
|
20 |
+
name: mean_reward
|
21 |
+
verified: false
|
22 |
+
---
|
23 |
+
|
24 |
+
# **HER** Agent playing **BLAdapEnv**
|
25 |
+
This is a trained model of a **HER** agent playing **BLAdapEnv**
|
26 |
+
using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
27 |
+
|
28 |
+
## Usage (with Stable-baselines3)
|
29 |
+
TODO: Add your code
|
30 |
+
|
31 |
+
|
32 |
+
```python
|
33 |
+
from stable_baselines3 import ...
|
34 |
+
from huggingface_sb3 import load_from_hub
|
35 |
+
|
36 |
+
...
|
37 |
+
```
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x7f26211b5d80>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f26211b3d00>"}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256, 256], "n_critics": 1}, "num_timesteps": 100, "_total_timesteps": 100, "_num_timesteps_at_start": 0, "seed": 188156, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>", ":serialized:": "gAWVUwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmk4lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGJLBIWUjAFDlHSUUpSMBl9zaWdtYZRoCCiWIAAAAAAAAAC4HoXrUbi+P7gehetRuL4/uB6F61G4vj+4HoXrUbi+P5RoDIwCZjiUiYiHlFKUKEsDaBBOTk5K/////0r/////SwB0lGJLBIWUaBN0lFKUjAZfZHR5cGWUaAqMB2Zsb2F0MzKUk5R1Yi4=", "_mu": "[0 0 0 0]", "_sigma": "[0.12 0.12 0.12 0.12]", "_dtype": "<class 'numpy.float32'>"}, "start_time": 1720265267844753897, "learning_rate": 0.0001, "tensorboard_log": "tensorboard_logs/KimHerEnv", "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_episode_num": 20, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVgAIAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHwBQAAAAAAACMAWyUSwWMAXSURz/44HX2/SH/dX2UKGgGR8AUAAAAAAAAaAdLBWgIRz/+YybhFVkudX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ABqX8fms/6dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AD8Dr7fpEAdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AHIuoP07KadX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AJ9FUhmoR7dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ANZ2dNFjNIdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0APoumJm/WUdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ARgZxaPjn3dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0ATbGBFuvU0dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AUSLDQ7cO9dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AVhXA/LTx5dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AXNHOKO1fFdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AYOIxgy/KydX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AZkmeDnNgSdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AaxDTjNpuddX2UKGgGR8AUAAAAAAAAaAdLBWgIR0Ac6rDIikftdX2UKGgGR8AUAAAAAAAAaAdLBWgIR0Ad6QLeANG3dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AfQ5imVJL/dX2UKGgGR8AUAAAAAAAAaAdLBWgIR0AgU5HVf/m1dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVNgAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKImJiYmJiYmJiYmJiYmJiYmJiYmJZS4="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=", "spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVaQIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihDmy1dvDPNhBCrNmKxzSnNdjANpbmOUihBnIv4gZwgPDqbmwNyJmNxldYwKaGFzX3VpbnQzMpRLAIwIdWludGVnZXKUSwB1YnViLg==", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[0. 0. 0. 0.]", "high": "[1. 1. 1. 1.]", "low_repr": "0.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.95, "gradient_steps": -1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==", "__module__": "helpers.CustomHerReplayBuffer", "add": "<function CustomHerReplayBuffer.add at 0x7f262104e9e0>", "__doc__": null, "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f2621057a80>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future", "copy_info_dict": true}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVZAAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMB2VwaXNvZGWUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWV5AIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMZy9ob21lL3VzZXIvcmlwa2VhMS8udmlydHVhbGVudnMvc2FuZC1neW0vbGliL3B5dGhvbjMuMTAvc2l0ZS1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjGcvaG9tZS91c2VyL3JpcGtlYTEvLnZpcnR1YWxlbnZzL3NhbmQtZ3ltL2xpYi9weXRob24zLjEwL3NpdGUtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUaACMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/Gjbi6xxDLYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Linux-5.15.0-105-generic-x86_64-with-glibc2.31 # 115~20.04.1-Ubuntu SMP Mon Apr 15 17:33:04 UTC 2024", "Python": "3.10.14", "Stable-Baselines3": "2.2.1", "PyTorch": "2.3.0+cu121", "GPU Enabled": "True", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu", "__module__": "stable_baselines3.td3.policies", "__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ", "__init__": "<function MultiInputPolicy.__init__ at 0x000002A2E02480D0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002A2E0245840>"}, "verbose": 0, "policy_kwargs": {"net_arch": [256, 256, 256], "n_critics": 1}, "num_timesteps": 4, "_total_timesteps": 4, "_num_timesteps_at_start": 0, "seed": null, "action_noise": {":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>", ":serialized:": "gAWVQwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlIwGX3NpZ21hlGgIKJYgAAAAAAAAALgehetRuL4/uB6F61G4vj+4HoXrUbi+P7gehetRuL4/lGgMjAJmOJSJiIeUUpQoSwNoEE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==", "_mu": "[0 0 0 0]", "_sigma": "[0.12 0.12 0.12 0.12]", "_dtype": "<class 'numpy.float32'>"}, "start_time": 1721839338079973900, "learning_rate": 0.0001, "tensorboard_log": "tensorboard_logs\\BLOrigEnv", "_last_obs": null, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==", "achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]", "observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.25, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 0, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=", "spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihFsgiZXrqlrgMusVEXHYvfiAIwDaW5jlIoRl4Pkqx5EN7dgdHO2O2AXwgB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu", "dtype": "float32", "bounded_below": "[ True True True True]", "bounded_above": "[ True True True True]", "_shape": [4], "low": "[0. 0. 0. 0.]", "high": "[1. 1. 1. 1.]", "low_repr": "0.0", "high_repr": "1.0", "_np_random": "Generator(PCG64)"}, "n_envs": 1, "buffer_size": 1000000, "batch_size": 256, "learning_starts": 100, "tau": 0.005, "gamma": 0.95, "gradient_steps": 1, "optimize_memory_usage": false, "replay_buffer_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==", "__module__": "helpers.CustomHerReplayBuffer", "add": "<function CustomHerReplayBuffer.add at 0x000002A2E02DF3A0>", "__doc__": null, "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002A2E02E2440>"}, "replay_buffer_kwargs": {"n_sampled_goal": 4, "goal_selection_strategy": "future", "copy_info_dict": true}, "train_freq": {":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>", ":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"}, "use_sde_at_warmup": false, "policy_delay": 1, "target_noise_clip": 0.0, "target_policy_noise": 0.1, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjF1EOlxQeUNoYXJtIENvbW11bml0eSBFZGl0aW9uIDIwMTkuM1x2ZW52c1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaBwpUpSFlHSUUpRoImg8fZR9lChoGGgzaCWMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCd9lGgpTmgqTmgraBloLE5oLWgvRz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRF2UaEZ9lHWGlIZSMC4="}, "actor_batch_norm_stats": [], "critic_batch_norm_stats": [], "actor_batch_norm_stats_target": [], "critic_batch_norm_stats_target": [], "system_info": {"OS": "Windows-10-10.0.19045-SP0 10.0.19045", "Python": "3.9.13", "Stable-Baselines3": "2.3.2", "PyTorch": "2.3.0+cpu", "GPU Enabled": "False", "Numpy": "1.26.3", "Cloudpickle": "3.0.0", "Gymnasium": "0.29.1", "OpenAI Gym": "0.26.2"}}
|
model.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:59e70aa16fe7f18ef82bd116d7b2edd5b1a219bbc6934a56f4bc828845692766
|
3 |
+
size 14740268
|
model/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
2.3.2
|
model/actor.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07eff6581ac8bba041a58c895861efeb6d12a5d0145cfd0380efee25082f2ff9
|
3 |
+
size 1120
|
model/critic.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:07eff6581ac8bba041a58c895861efeb6d12a5d0145cfd0380efee25082f2ff9
|
3 |
+
size 1120
|
model/data
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVNwAAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLnRkMy5wb2xpY2llc5SMEE11bHRpSW5wdXRQb2xpY3mUk5Qu",
|
5 |
+
"__module__": "stable_baselines3.td3.policies",
|
6 |
+
"__doc__": "\n Policy class (with both actor and critic) for TD3 to be used with Dict observation spaces.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n :param n_critics: Number of critic networks to create.\n :param share_features_extractor: Whether to share or not the features extractor\n between the actor and the critic (this saves computation time)\n ",
|
7 |
+
"__init__": "<function MultiInputPolicy.__init__ at 0x000002A2E02480D0>",
|
8 |
+
"__abstractmethods__": "frozenset()",
|
9 |
+
"_abc_impl": "<_abc._abc_data object at 0x000002A2E0245840>"
|
10 |
+
},
|
11 |
+
"verbose": 0,
|
12 |
+
"policy_kwargs": {
|
13 |
+
"net_arch": [
|
14 |
+
256,
|
15 |
+
256,
|
16 |
+
256
|
17 |
+
],
|
18 |
+
"n_critics": 1
|
19 |
+
},
|
20 |
+
"num_timesteps": 4,
|
21 |
+
"_total_timesteps": 4,
|
22 |
+
"_num_timesteps_at_start": 0,
|
23 |
+
"seed": null,
|
24 |
+
"action_noise": {
|
25 |
+
":type:": "<class 'stable_baselines3.common.noise.NormalActionNoise'>",
|
26 |
+
":serialized:": "gAWVQwEAAAAAAACMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5ub2lzZZSMEU5vcm1hbEFjdGlvbk5vaXNllJOUKYGUfZQojANfbXWUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksEhZSMAUOUdJRSlIwGX3NpZ21hlGgIKJYgAAAAAAAAALgehetRuL4/uB6F61G4vj+4HoXrUbi+P7gehetRuL4/lGgMjAJmOJSJiIeUUpQoSwNoEE5OTkr/////Sv////9LAHSUYksEhZRoE3SUUpSMBl9kdHlwZZRoCowHZmxvYXQzMpSTlHViLg==",
|
27 |
+
"_mu": "[0 0 0 0]",
|
28 |
+
"_sigma": "[0.12 0.12 0.12 0.12]",
|
29 |
+
"_dtype": "<class 'numpy.float32'>"
|
30 |
+
},
|
31 |
+
"start_time": 1721839338079973900,
|
32 |
+
"learning_rate": 0.0001,
|
33 |
+
"tensorboard_log": "tensorboard_logs\\BLOrigEnv",
|
34 |
+
"_last_obs": null,
|
35 |
+
"_last_episode_starts": {
|
36 |
+
":type:": "<class 'numpy.ndarray'>",
|
37 |
+
":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
|
38 |
+
},
|
39 |
+
"_last_original_obs": {
|
40 |
+
":type:": "<class 'collections.OrderedDict'>",
|
41 |
+
":serialized:": "gAWVAQ0AAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJSMBW51bXB5lIwFZHR5cGWUk5SMAmkxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLAUsgSyCHlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcolgAEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEBAAAAAAAAAAABAQEBAQEBAQEBAQEBAQEBAQEBAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAJRoDksBSyBLIIeUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQEBAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEBAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAABAQEBAQEAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlGgOSwFLIEsgh5RoEnSUUpR1Lg==",
|
42 |
+
"achieved_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
|
43 |
+
"desired_goal": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]",
|
44 |
+
"observation": "[[[0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n ...\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]\n [0 0 0 ... 0 0 0]]]"
|
45 |
+
},
|
46 |
+
"_episode_num": 0,
|
47 |
+
"use_sde": false,
|
48 |
+
"sde_sample_freq": -1,
|
49 |
+
"_current_progress_remaining": 0.25,
|
50 |
+
"_stats_window_size": 100,
|
51 |
+
"ep_info_buffer": {
|
52 |
+
":type:": "<class 'collections.deque'>",
|
53 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
54 |
+
},
|
55 |
+
"ep_success_buffer": {
|
56 |
+
":type:": "<class 'collections.deque'>",
|
57 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
58 |
+
},
|
59 |
+
"_n_updates": 0,
|
60 |
+
"observation_space": {
|
61 |
+
":type:": "<class 'gymnasium.spaces.dict.Dict'>",
|
62 |
+
":serialized:": "gAWVXwEAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwdZ3ltbmFzaXVtLnNwYWNlcy5tdWx0aV9iaW5hcnmUjAtNdWx0aUJpbmFyeZSTlCmBlH2UKIwBbpRLIEsghpSMBl9zaGFwZZRoEYwFZHR5cGWUjAVudW1weZSMBWR0eXBllJOUjAJpMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRijApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBLIEsghpRoEmggaBNoGWgcTnVijAtvYnNlcnZhdGlvbpRoDSmBlH2UKGgQSyBLIIaUaBJoJGgTaBloHE51YnVoEk5oE05oHE51Yi4=",
|
63 |
+
"spaces": "OrderedDict([('achieved_goal', MultiBinary((32, 32))), ('desired_goal', MultiBinary((32, 32))), ('observation', MultiBinary((32, 32)))])",
|
64 |
+
"_shape": null,
|
65 |
+
"dtype": null,
|
66 |
+
"_np_random": null
|
67 |
+
},
|
68 |
+
"action_space": {
|
69 |
+
":type:": "<class 'gymnasium.spaces.box.Box'>",
|
70 |
+
":serialized:": "gAWVawIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWBAAAAAAAAAABAQEBlGgIjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKUjA1ib3VuZGVkX2Fib3ZllGgRKJYEAAAAAAAAAAEBAQGUaBVLBIWUaBl0lFKUjAZfc2hhcGWUSwSFlIwDbG93lGgRKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAtLBIWUaBl0lFKUjARoaWdolGgRKJYQAAAAAAAAAAAAgD8AAIA/AACAPwAAgD+UaAtLBIWUaBl0lFKUjAhsb3dfcmVwcpSMAzAuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UjBRudW1weS5yYW5kb20uX3BpY2tsZZSMEF9fZ2VuZXJhdG9yX2N0b3KUk5SMBVBDRzY0lGgyjBRfX2JpdF9nZW5lcmF0b3JfY3RvcpSTlIaUUpR9lCiMDWJpdF9nZW5lcmF0b3KUjAVQQ0c2NJSMBXN0YXRllH2UKGg9ihFsgiZXrqlrgMusVEXHYvfiAIwDaW5jlIoRl4Pkqx5EN7dgdHO2O2AXwgB1jApoYXNfdWludDMylEsAjAh1aW50ZWdlcpRLAHVidWIu",
|
71 |
+
"dtype": "float32",
|
72 |
+
"bounded_below": "[ True True True True]",
|
73 |
+
"bounded_above": "[ True True True True]",
|
74 |
+
"_shape": [
|
75 |
+
4
|
76 |
+
],
|
77 |
+
"low": "[0. 0. 0. 0.]",
|
78 |
+
"high": "[1. 1. 1. 1.]",
|
79 |
+
"low_repr": "0.0",
|
80 |
+
"high_repr": "1.0",
|
81 |
+
"_np_random": "Generator(PCG64)"
|
82 |
+
},
|
83 |
+
"n_envs": 1,
|
84 |
+
"buffer_size": 1000000,
|
85 |
+
"batch_size": 256,
|
86 |
+
"learning_starts": 100,
|
87 |
+
"tau": 0.005,
|
88 |
+
"gamma": 0.95,
|
89 |
+
"gradient_steps": 1,
|
90 |
+
"optimize_memory_usage": false,
|
91 |
+
"replay_buffer_class": {
|
92 |
+
":type:": "<class 'abc.ABCMeta'>",
|
93 |
+
":serialized:": "gAWVOwAAAAAAAACMHWhlbHBlcnMuQ3VzdG9tSGVyUmVwbGF5QnVmZmVylIwVQ3VzdG9tSGVyUmVwbGF5QnVmZmVylJOULg==",
|
94 |
+
"__module__": "helpers.CustomHerReplayBuffer",
|
95 |
+
"add": "<function CustomHerReplayBuffer.add at 0x000002A2E02DF3A0>",
|
96 |
+
"__doc__": null,
|
97 |
+
"__abstractmethods__": "frozenset()",
|
98 |
+
"_abc_impl": "<_abc._abc_data object at 0x000002A2E02E2440>"
|
99 |
+
},
|
100 |
+
"replay_buffer_kwargs": {
|
101 |
+
"n_sampled_goal": 4,
|
102 |
+
"goal_selection_strategy": "future",
|
103 |
+
"copy_info_dict": true
|
104 |
+
},
|
105 |
+
"train_freq": {
|
106 |
+
":type:": "<class 'stable_baselines3.common.type_aliases.TrainFreq'>",
|
107 |
+
":serialized:": "gAWVYQAAAAAAAACMJXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi50eXBlX2FsaWFzZXOUjAlUcmFpbkZyZXGUk5RLAWgAjBJUcmFpbkZyZXF1ZW5jeVVuaXSUk5SMBHN0ZXCUhZRSlIaUgZQu"
|
108 |
+
},
|
109 |
+
"use_sde_at_warmup": false,
|
110 |
+
"policy_delay": 1,
|
111 |
+
"target_noise_clip": 0.0,
|
112 |
+
"target_policy_noise": 0.1,
|
113 |
+
"lr_schedule": {
|
114 |
+
":type:": "<class 'function'>",
|
115 |
+
":serialized:": "gAWVSwMAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLA0sTQwx0AIgAfACDAYMBUwCUToWUjAVmbG9hdJSFlIwScHJvZ3Jlc3NfcmVtYWluaW5nlIWUjF1EOlxQeUNoYXJtIENvbW11bml0eSBFZGl0aW9uIDIwMTkuM1x2ZW52c1xsaWJcc2l0ZS1wYWNrYWdlc1xzdGFibGVfYmFzZWxpbmVzM1xjb21tb25cdXRpbHMucHmUjAg8bGFtYmRhPpRLYUMAlIwOdmFsdWVfc2NoZWR1bGWUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flGgOdU5OaACMEF9tYWtlX2VtcHR5X2NlbGyUk5QpUpSFlHSUUpRoAIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgYaA+MDF9fcXVhbG5hbWVfX5SMIWdldF9zY2hlZHVsZV9mbi48bG9jYWxzPi48bGFtYmRhPpSMD19fYW5ub3RhdGlvbnNfX5R9lIwOX19rd2RlZmF1bHRzX1+UTowMX19kZWZhdWx0c19flE6MCl9fbW9kdWxlX1+UaBmMB19fZG9jX1+UTowLX19jbG9zdXJlX1+UaACMCl9tYWtlX2NlbGyUk5RoAihoByhLAUsASwBLAUsBSxNDBIgAUwCUaAkpjAFflIWUaA6MBGZ1bmOUS4VDAgABlIwDdmFslIWUKXSUUpRoFU5OaBwpUpSFlHSUUpRoImg8fZR9lChoGGgzaCWMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUaCd9lGgpTmgqTmgraBloLE5oLWgvRz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjCFlFKUhZRoRF2UaEZ9lHWGlIZSMC4="
|
116 |
+
},
|
117 |
+
"actor_batch_norm_stats": [],
|
118 |
+
"critic_batch_norm_stats": [],
|
119 |
+
"actor_batch_norm_stats_target": [],
|
120 |
+
"critic_batch_norm_stats_target": []
|
121 |
+
}
|
model/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4c691b64569539221bc219a1abf98483efeaaa25d88f59514adce0a0e839afaa
|
3 |
+
size 14722870
|
model/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fb4dde0c1ad63b7740276006a06cc491b21b407ea6c889928c223ec77ddad79f
|
3 |
+
size 864
|
model/system_info.txt
ADDED
@@ -0,0 +1,9 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
- OS: Windows-10-10.0.19045-SP0 10.0.19045
|
2 |
+
- Python: 3.9.13
|
3 |
+
- Stable-Baselines3: 2.3.2
|
4 |
+
- PyTorch: 2.3.0+cpu
|
5 |
+
- GPU Enabled: False
|
6 |
+
- Numpy: 1.26.3
|
7 |
+
- Cloudpickle: 3.0.0
|
8 |
+
- Gymnasium: 0.29.1
|
9 |
+
- OpenAI Gym: 0.26.2
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -
|
|
|
1 |
+
{"mean_reward": -6.0, "std_reward": 0.0, "is_deterministic": true, "n_eval_episodes": 26, "eval_datetime": "2024-07-24T18:49:16.878720"}
|