LunarLander-v2 / config.json
rzimmerdev's picture
Initial commit
9baaab7
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7a640a6e0670>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7a640a6e0700>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7a640a6e0790>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7a640a6e0820>", "_build": "<function ActorCriticPolicy._build at 0x7a640a6e08b0>", "forward": "<function ActorCriticPolicy.forward at 0x7a640a6e0940>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7a640a6e09d0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7a640a6e0a60>", "_predict": "<function ActorCriticPolicy._predict at 0x7a640a6e0af0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7a640a6e0b80>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7a640a6e0c10>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7a640a6e0ca0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7a640a6d5180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696081256221683401, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAACDGMb6pqVa8Q/d1uzedtblaesM9+1iXOgAAgD8AAIA/ZoY5vNfbbLvDHVK77Tq8PL4HpDyVT4y5AACAPwAAgD/Qd7e+8rZAP0pcKL7hrA6/Fvghvsr4ojwAAAAAAAAAAAAPWz1SMvo88FIJO+Y+1707Gf48cCJQPAAAAAAAAAAArX6Dvr0sczx8HZ49KtjgOyYsJr5LbF09AACAPwAAgD+aV768K+A+PxLnNb1UFvu+hTepur2aFLwAAAAAAAAAACBkLL6pr268Em6BOqFznjgwSMs9jiynuQAAgD8AAIA/GqIkvf1TaT8twxK+G98Fv8w2Hrxm1oK8AAAAAAAAAAAObIi+dIjyPa0Wjj5Sbfi9dsmGPZn3A70AAAAAAAAAAKoKir6Nlow/2lPNvkrGKb/uyCO+YjdgvQAAAAAAAAAAU9U/Pq6Jirynz8c7ogYeuiCj8L0e2Py6AACAPwAAgD+2Tbq+/djEPqP7Pz4v96y+TTbLvRXeBT4AAAAAAAAAALMupD1q1KI/BSgCP+RG8r6aHZY9owdcPgAAAAAAAAAA+n4Kvlw3XLpq/W08wLeAuWtRFLuIF7I5AACAPwAAgD+6RBu+6DC7Pna3xr2VTcW+j+2svW3wibwAAAAAAAAAACCFFD6BE58/CMitPhqhBb+YDig+JDUOPQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVCwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQHFJkt29tdmMAWyUTSABjAF0lEdAl/90LUkOZ3V9lChoBkdAccCIXTEzf2gHTQcBaAhHQJgCPNnoPkJ1fZQoaAZHQGyWEcjqv/1oB0voaAhHQJgDKuoxYaJ1fZQoaAZHQHAcnzH0btJoB0vtaAhHQJgFWaiKziV1fZQoaAZHQHIOSDujRD1oB0vPaAhHQJgFZu3trsV1fZQoaAZHQGTVJgb6xgRoB03oA2gIR0CYBgHCGetkdX2UKGgGR0Bv1g8GLUCraAdNCgFoCEdAmAbEQK8cuXV9lChoBkdAcEpc5bQkX2gHS+JoCEdAmAcGmtQsPXV9lChoBkdAcQ7FcIJJG2gHTRcBaAhHQJgHoc1fmcR1fZQoaAZHQHGX3pB5X2doB00EAWgIR0CYCQtqpLmIdX2UKGgGR0BiL+Nm16VuaAdN6ANoCEdAmGWF8LKFI3V9lChoBkdAcAJlPrOZ9mgHS/FoCEdAmGWIEOiFkHV9lChoBkdAcadXRw6ySmgHS+BoCEdAmGhLmlqJuXV9lChoBkdAbz0Ae7tiQWgHS9hoCEdAmGkUZBLPEHV9lChoBkdAYkLWGyon8mgHTegDaAhHQJhr+Xw9aEB1fZQoaAZHQHCH/OpsGgVoB0vkaAhHQJhsZ1Tzd1x1fZQoaAZHQHL6dtVJcxFoB0vbaAhHQJhsjaTOgQJ1fZQoaAZHQG8gfC66J69oB0v6aAhHQJhtSKUFB6d1fZQoaAZHQF3kifxtpEhoB03oA2gIR0CYbVuUliSadX2UKGgGR0BsPdT1kDp1aAdL6GgIR0CYbk5le4TcdX2UKGgGR0Bw3xqesgdPaAdL82gIR0CYb+IjGDL9dX2UKGgGR0BxT8E3bVSXaAdNKAFoCEdAmHAgAp8WsXV9lChoBkdAcQGh9srNGGgHS99oCEdAmHB/2PDHfnV9lChoBkdAcbkBikO7QWgHS+NoCEdAmHCjsyBTXXV9lChoBkdAcbeiCaqjrWgHTUoBaAhHQJhxIrAgxJx1fZQoaAZHQHBUUAksz2xoB00XAWgIR0CYdAreIl+mdX2UKGgGR0Bgel0eU6geaAdN6ANoCEdAmHVS4J/oaHV9lChoBkdAcZPa99MK1GgHS+loCEdAmHWp4GD+SHV9lChoBkdAcY6o3rD632gHTQkBaAhHQJh1/umaYu11fZQoaAZHQHE3MIAwPAhoB00FAWgIR0CYdrZqmCRPdX2UKGgGR0BwvzeN1hb4aAdNFAFoCEdAmHgvm9xp+XV9lChoBkdAcF5adtl7MWgHS/RoCEdAmHjb92ovSXV9lChoBkdAcRa8AaNuL2gHS/BoCEdAmHkRnezlcXV9lChoBkdAYj5Ux20Re2gHTegDaAhHQJh6MgU1yeZ1fZQoaAZHQHHTWCdz4lBoB00lAWgIR0CYenLRKHwgdX2UKGgGR0ByJwptrKvFaAdNDAFoCEdAmHrFHe7+UHV9lChoBkdAcR5eQuEmIGgHTSgBaAhHQJh+yeumrKh1fZQoaAZHQG9I/hMrVe9oB0vgaAhHQJh+2ruIAOt1fZQoaAZHQHB3curZJ05oB00DAWgIR0CYf2alDWsjdX2UKGgGR0BgNEUypJf6aAdN6ANoCEdAmIECwr1/UnV9lChoBkdAcOSGPPszEmgHS/poCEdAmIFgcT8HfXV9lChoBkdANULDAJswc2gHS9FoCEdAmIHiIxgy/XV9lChoBkdAcQ3YsunMuGgHTQwBaAhHQJiC6M0gr6N1fZQoaAZHQHEBBZuAI6doB0v4aAhHQJiD6tCAtnR1fZQoaAZHQHEhUQXhwVFoB00PAWgIR0CYhGreIl+mdX2UKGgGR0BvKjUmUnogaAdL6mgIR0CYh4Ktga3rdX2UKGgGR0Bzk/spobn6aAdL/GgIR0CYiEQ9zOopdX2UKGgGR0Bt4jDMvAXVaAdL1WgIR0CYiYaNuLrHdX2UKGgGR0BvrDNOdoWYaAdL6mgIR0CYiwaLn9vTdX2UKGgGR0Bt+PRPXTVlaAdL52gIR0CYjB42CNCJdX2UKGgGR0BwECAWi1zAaAdNYAFoCEdAmI0rNOdoWnV9lChoBkdAcBCEgGKQ72gHS+ZoCEdAmI3GO2iL23V9lChoBkdAcF7TV2A5JmgHS/toCEdAmI4adUbT+nV9lChoBkdAYFR1rZamoGgHTegDaAhHQJiQGeSSvDB1fZQoaAZHQHImMcMmWt5oB0vpaAhHQJiRN1GLDQ91fZQoaAZHQGSwJGWldkdoB03oA2gIR0CYkcKxs2vTdX2UKGgGR0BiObJlrdnCaAdN6ANoCEdAmJJOymhufnV9lChoBkdAb8qmLtNSImgHS9toCEdAmJKJCv5gxHV9lChoBkdAcHYk1/DtPmgHS/hoCEdAmJWCaiKziXV9lChoBkdAYFmu3+dbxGgHTegDaAhHQJiYAr1/UfB1fZQoaAZHQHKIybpeNT9oB00bAWgIR0CYmQ2criEQdX2UKGgGR0Bwj/z3AVO9aAdL9WgIR0CYmZv9cbBHdX2UKGgGR0BxwTUe+23KaAdLyWgIR0CYmcm1IAfddX2UKGgGR0BvULIeYD1XaAdL4mgIR0CYnPYI0IkadX2UKGgGR0Bwgguf29L6aAdL1GgIR0CYnQUrCm/GdX2UKGgGR0BxWj+jua4MaAdL5WgIR0CYn1YDTz/ZdX2UKGgGR0BkLRmEoOQRaAdN6ANoCEdAmJ/YGD+R5nV9lChoBkdAYeJPUrkKeGgHTegDaAhHQJigZ/PPcBV1fZQoaAZHQHCZTT8YQ8RoB0vXaAhHQJiiTFsHjZN1fZQoaAZHQHKQ8d5prUNoB00pAWgIR0CYovw/gR9PdX2UKGgGR0Bgy2Cwr1/UaAdN6ANoCEdAmKW4dIXj2nV9lChoBkdAN4tzr/sE7mgHS9poCEdAmKaXV5KODXV9lChoBkdAbUj9tMwlB2gHS/ZoCEdAmKanFo+OfnV9lChoBkdAcDB8an7522gHS/doCEdAmKfEdmxt53V9lChoBkdAcfbXqZ+hG2gHTQEBaAhHQJio7oicG1R1fZQoaAZHQHLPYtthuwZoB0vhaAhHQJiqOgqVhTh1fZQoaAZHQHCSElJHy3FoB0voaAhHQJiqq1Bt1p11fZQoaAZHQHBonUH6dlNoB0viaAhHQJisoo8ZDRd1fZQoaAZHQHB4MzVMEidoB0vsaAhHQJisqnIhhYx1fZQoaAZHQG8NI9cKPXFoB0v1aAhHQJisuGcnVoZ1fZQoaAZHQHABVj/dZaFoB0viaAhHQJit1GAkLQZ1fZQoaAZHQGGhCLdepn9oB03oA2gIR0CYr9R64UeudX2UKGgGR0Bw/XNliBoVaAdL8GgIR0CYsJ5jH4oJdX2UKGgGR0BvdRC+lCTmaAdL42gIR0CYsK2F36hydX2UKGgGR0BxR0c94eLfaAdL7GgIR0CYsREtdzGQdX2UKGgGR0Bvb+bkOqecaAdL5mgIR0CYsm9pAUtadX2UKGgGR0Bxao3Lmp2maAdL8WgIR0CYtDBzV+ZxdX2UKGgGR0BvOlPi1iOOaAdL7GgIR0CYthy3Td+HdX2UKGgGR0ByFP/S6UaAaAdNUwFoCEdAmLYs6BAfMnV9lChoBkdAcZRlLOAy22gHTQUBaAhHQJi3LZ8KG+N1fZQoaAZHQFn5r6tT1kFoB03oA2gIR0CYt+WXTmW/dX2UKGgGR0Bw2vaPCEYgaAdL/GgIR0CYuB4pc5bRdX2UKGgGR0Bw6b/XGwRoaAdL92gIR0CYuokrf+CLdX2UKGgGR0BxnWzu4PPLaAdNDAFoCEdAmLqfDLr5ZnV9lChoBkdAcRZBf8dgfGgHS/loCEdAmLsJR8+ianV9lChoBkdAboZBt1p0wWgHS/BoCEdAmLv3pwCKaXV9lChoBkdAX09LSNOuaGgHTegDaAhHQJi8GZWq95B1fZQoaAZHQHAH0UTL4etoB00iAWgIR0CYvCqrR0EHdX2UKGgGR0BgwR6OYIBzaAdN6ANoCEdAmLyJZSvTw3V9lChoBkdAcQnJ53Tuv2gHS/RoCEdAmL1YXfqHGnVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVcAIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoB4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoECiWCAAAAAAAAAABAQEBAQEBAZRoFEsIhZRoGHSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBAoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaApLCIWUaBh0lFKUjARoaWdolGgQKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgKSwiFlGgYdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV1QAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCloCmgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}