prt_ commited on
Commit
f4f7ee2
1 Parent(s): a267777

upload CAG 13b

Browse files
added_tokens.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ {
2
+ "<pad>": 32000
3
+ }
config.json ADDED
@@ -0,0 +1,27 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/mnt/arknet/hf_models/llama-2-13b-hf",
3
+ "architectures": [
4
+ "LlamaForCausalLM"
5
+ ],
6
+ "bos_token_id": 1,
7
+ "eos_token_id": 2,
8
+ "hidden_act": "silu",
9
+ "hidden_size": 5120,
10
+ "initializer_range": 0.02,
11
+ "intermediate_size": 13824,
12
+ "max_length": 4096,
13
+ "max_position_embeddings": 4096,
14
+ "model_type": "llama",
15
+ "num_attention_heads": 40,
16
+ "num_hidden_layers": 40,
17
+ "num_key_value_heads": 40,
18
+ "pad_token_id": 0,
19
+ "pretraining_tp": 2,
20
+ "rms_norm_eps": 1e-05,
21
+ "rope_scaling": null,
22
+ "tie_word_embeddings": false,
23
+ "torch_dtype": "float32",
24
+ "transformers_version": "4.28.1",
25
+ "use_cache": true,
26
+ "vocab_size": 32000
27
+ }
generation_config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 1,
4
+ "eos_token_id": 2,
5
+ "max_length": 4096,
6
+ "pad_token_id": 0,
7
+ "temperature": 0.9,
8
+ "top_p": 0.6,
9
+ "transformers_version": "4.28.1"
10
+ }
pytorch_model-00001-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:266694a55392532a47cc686f10a1a8144f033f1aaf2395c281bd67b38e71cd90
3
+ size 9956545483
pytorch_model-00002-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ed104729e312c28d1d58e81abf024058d38c126e4f28ca44d7738abaea5b1c94
3
+ size 9940857985
pytorch_model-00003-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:05275246553a4f281abbfa7dea436aa8caf1d4d2ac5203b6a6ff86c4ee66d570
3
+ size 9940858607
pytorch_model-00004-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d14bdd898dae69186875f87048fdc3f5da2927d7fc46f6e45ed71a2365cd4e59
3
+ size 9867416953
pytorch_model-00005-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5f8a06a88ddc99b66f1fe7504a1d9c0bc5d2d35bb50e93816e52cfd7cc19eb8
3
+ size 9867458625
pytorch_model-00006-of-00006.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:65e6eef06b430b9d99579437eba5829712a860b27e72be9ece035f627f16b860
3
+ size 2490476527
pytorch_model.bin.index.json ADDED
@@ -0,0 +1,410 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 52063467520
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "pytorch_model-00006-of-00006.bin",
7
+ "model.embed_tokens.weight": "pytorch_model-00001-of-00006.bin",
8
+ "model.layers.0.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
9
+ "model.layers.0.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
10
+ "model.layers.0.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
11
+ "model.layers.0.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
12
+ "model.layers.0.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
13
+ "model.layers.0.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
14
+ "model.layers.0.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
15
+ "model.layers.0.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
16
+ "model.layers.0.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
17
+ "model.layers.0.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
18
+ "model.layers.1.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
19
+ "model.layers.1.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
20
+ "model.layers.1.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
21
+ "model.layers.1.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
22
+ "model.layers.1.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
23
+ "model.layers.1.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
24
+ "model.layers.1.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
25
+ "model.layers.1.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
26
+ "model.layers.1.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
27
+ "model.layers.1.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
28
+ "model.layers.10.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
29
+ "model.layers.10.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
30
+ "model.layers.10.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
31
+ "model.layers.10.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
32
+ "model.layers.10.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
33
+ "model.layers.10.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
34
+ "model.layers.10.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
35
+ "model.layers.10.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
36
+ "model.layers.10.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
37
+ "model.layers.10.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
38
+ "model.layers.11.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
39
+ "model.layers.11.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
40
+ "model.layers.11.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
41
+ "model.layers.11.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
42
+ "model.layers.11.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
43
+ "model.layers.11.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
44
+ "model.layers.11.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
45
+ "model.layers.11.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
46
+ "model.layers.11.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
47
+ "model.layers.11.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
48
+ "model.layers.12.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
49
+ "model.layers.12.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
50
+ "model.layers.12.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
51
+ "model.layers.12.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
52
+ "model.layers.12.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
53
+ "model.layers.12.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
54
+ "model.layers.12.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
55
+ "model.layers.12.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
56
+ "model.layers.12.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
57
+ "model.layers.12.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
58
+ "model.layers.13.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
59
+ "model.layers.13.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
60
+ "model.layers.13.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
61
+ "model.layers.13.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
62
+ "model.layers.13.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
63
+ "model.layers.13.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
64
+ "model.layers.13.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
65
+ "model.layers.13.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
66
+ "model.layers.13.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
67
+ "model.layers.13.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
68
+ "model.layers.14.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
69
+ "model.layers.14.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
70
+ "model.layers.14.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
71
+ "model.layers.14.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
72
+ "model.layers.14.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
73
+ "model.layers.14.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
74
+ "model.layers.14.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
75
+ "model.layers.14.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
76
+ "model.layers.14.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
77
+ "model.layers.14.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
78
+ "model.layers.15.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
79
+ "model.layers.15.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
80
+ "model.layers.15.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
81
+ "model.layers.15.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
82
+ "model.layers.15.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
83
+ "model.layers.15.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
84
+ "model.layers.15.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
85
+ "model.layers.15.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
86
+ "model.layers.15.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
87
+ "model.layers.15.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
88
+ "model.layers.16.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
89
+ "model.layers.16.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
90
+ "model.layers.16.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
91
+ "model.layers.16.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
92
+ "model.layers.16.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
93
+ "model.layers.16.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
94
+ "model.layers.16.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
95
+ "model.layers.16.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
96
+ "model.layers.16.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
97
+ "model.layers.16.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
98
+ "model.layers.17.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
99
+ "model.layers.17.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
100
+ "model.layers.17.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
101
+ "model.layers.17.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
102
+ "model.layers.17.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
103
+ "model.layers.17.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
104
+ "model.layers.17.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
105
+ "model.layers.17.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
106
+ "model.layers.17.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
107
+ "model.layers.17.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
108
+ "model.layers.18.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
109
+ "model.layers.18.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
110
+ "model.layers.18.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
111
+ "model.layers.18.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
112
+ "model.layers.18.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
113
+ "model.layers.18.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
114
+ "model.layers.18.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
115
+ "model.layers.18.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
116
+ "model.layers.18.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
117
+ "model.layers.18.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
118
+ "model.layers.19.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
119
+ "model.layers.19.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
120
+ "model.layers.19.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
121
+ "model.layers.19.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
122
+ "model.layers.19.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
123
+ "model.layers.19.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
124
+ "model.layers.19.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
125
+ "model.layers.19.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
126
+ "model.layers.19.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
127
+ "model.layers.19.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
128
+ "model.layers.2.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
129
+ "model.layers.2.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
130
+ "model.layers.2.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
131
+ "model.layers.2.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
132
+ "model.layers.2.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
133
+ "model.layers.2.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
134
+ "model.layers.2.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
135
+ "model.layers.2.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
136
+ "model.layers.2.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
137
+ "model.layers.2.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
138
+ "model.layers.20.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
139
+ "model.layers.20.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
140
+ "model.layers.20.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
141
+ "model.layers.20.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
142
+ "model.layers.20.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
143
+ "model.layers.20.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
144
+ "model.layers.20.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
145
+ "model.layers.20.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
146
+ "model.layers.20.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
147
+ "model.layers.20.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
148
+ "model.layers.21.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
149
+ "model.layers.21.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
150
+ "model.layers.21.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
151
+ "model.layers.21.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
152
+ "model.layers.21.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
153
+ "model.layers.21.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
154
+ "model.layers.21.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
155
+ "model.layers.21.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
156
+ "model.layers.21.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
157
+ "model.layers.21.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
158
+ "model.layers.22.input_layernorm.weight": "pytorch_model-00003-of-00006.bin",
159
+ "model.layers.22.mlp.down_proj.weight": "pytorch_model-00003-of-00006.bin",
160
+ "model.layers.22.mlp.gate_proj.weight": "pytorch_model-00003-of-00006.bin",
161
+ "model.layers.22.mlp.up_proj.weight": "pytorch_model-00003-of-00006.bin",
162
+ "model.layers.22.post_attention_layernorm.weight": "pytorch_model-00003-of-00006.bin",
163
+ "model.layers.22.self_attn.k_proj.weight": "pytorch_model-00003-of-00006.bin",
164
+ "model.layers.22.self_attn.o_proj.weight": "pytorch_model-00003-of-00006.bin",
165
+ "model.layers.22.self_attn.q_proj.weight": "pytorch_model-00003-of-00006.bin",
166
+ "model.layers.22.self_attn.rotary_emb.inv_freq": "pytorch_model-00003-of-00006.bin",
167
+ "model.layers.22.self_attn.v_proj.weight": "pytorch_model-00003-of-00006.bin",
168
+ "model.layers.23.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
169
+ "model.layers.23.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
170
+ "model.layers.23.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
171
+ "model.layers.23.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
172
+ "model.layers.23.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
173
+ "model.layers.23.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
174
+ "model.layers.23.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
175
+ "model.layers.23.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
176
+ "model.layers.23.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
177
+ "model.layers.23.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
178
+ "model.layers.24.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
179
+ "model.layers.24.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
180
+ "model.layers.24.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
181
+ "model.layers.24.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
182
+ "model.layers.24.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
183
+ "model.layers.24.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
184
+ "model.layers.24.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
185
+ "model.layers.24.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
186
+ "model.layers.24.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
187
+ "model.layers.24.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
188
+ "model.layers.25.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
189
+ "model.layers.25.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
190
+ "model.layers.25.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
191
+ "model.layers.25.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
192
+ "model.layers.25.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
193
+ "model.layers.25.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
194
+ "model.layers.25.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
195
+ "model.layers.25.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
196
+ "model.layers.25.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
197
+ "model.layers.25.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
198
+ "model.layers.26.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
199
+ "model.layers.26.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
200
+ "model.layers.26.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
201
+ "model.layers.26.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
202
+ "model.layers.26.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
203
+ "model.layers.26.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
204
+ "model.layers.26.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
205
+ "model.layers.26.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
206
+ "model.layers.26.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
207
+ "model.layers.26.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
208
+ "model.layers.27.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
209
+ "model.layers.27.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
210
+ "model.layers.27.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
211
+ "model.layers.27.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
212
+ "model.layers.27.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
213
+ "model.layers.27.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
214
+ "model.layers.27.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
215
+ "model.layers.27.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
216
+ "model.layers.27.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
217
+ "model.layers.27.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
218
+ "model.layers.28.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
219
+ "model.layers.28.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
220
+ "model.layers.28.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
221
+ "model.layers.28.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
222
+ "model.layers.28.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
223
+ "model.layers.28.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
224
+ "model.layers.28.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
225
+ "model.layers.28.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
226
+ "model.layers.28.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
227
+ "model.layers.28.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
228
+ "model.layers.29.input_layernorm.weight": "pytorch_model-00004-of-00006.bin",
229
+ "model.layers.29.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
230
+ "model.layers.29.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
231
+ "model.layers.29.mlp.up_proj.weight": "pytorch_model-00004-of-00006.bin",
232
+ "model.layers.29.post_attention_layernorm.weight": "pytorch_model-00004-of-00006.bin",
233
+ "model.layers.29.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
234
+ "model.layers.29.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
235
+ "model.layers.29.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
236
+ "model.layers.29.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
237
+ "model.layers.29.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
238
+ "model.layers.3.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
239
+ "model.layers.3.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
240
+ "model.layers.3.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
241
+ "model.layers.3.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
242
+ "model.layers.3.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
243
+ "model.layers.3.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
244
+ "model.layers.3.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
245
+ "model.layers.3.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
246
+ "model.layers.3.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
247
+ "model.layers.3.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
248
+ "model.layers.30.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
249
+ "model.layers.30.mlp.down_proj.weight": "pytorch_model-00004-of-00006.bin",
250
+ "model.layers.30.mlp.gate_proj.weight": "pytorch_model-00004-of-00006.bin",
251
+ "model.layers.30.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
252
+ "model.layers.30.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
253
+ "model.layers.30.self_attn.k_proj.weight": "pytorch_model-00004-of-00006.bin",
254
+ "model.layers.30.self_attn.o_proj.weight": "pytorch_model-00004-of-00006.bin",
255
+ "model.layers.30.self_attn.q_proj.weight": "pytorch_model-00004-of-00006.bin",
256
+ "model.layers.30.self_attn.rotary_emb.inv_freq": "pytorch_model-00004-of-00006.bin",
257
+ "model.layers.30.self_attn.v_proj.weight": "pytorch_model-00004-of-00006.bin",
258
+ "model.layers.31.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
259
+ "model.layers.31.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
260
+ "model.layers.31.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
261
+ "model.layers.31.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
262
+ "model.layers.31.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
263
+ "model.layers.31.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
264
+ "model.layers.31.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
265
+ "model.layers.31.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
266
+ "model.layers.31.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
267
+ "model.layers.31.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
268
+ "model.layers.32.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
269
+ "model.layers.32.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
270
+ "model.layers.32.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
271
+ "model.layers.32.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
272
+ "model.layers.32.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
273
+ "model.layers.32.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
274
+ "model.layers.32.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
275
+ "model.layers.32.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
276
+ "model.layers.32.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
277
+ "model.layers.32.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
278
+ "model.layers.33.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
279
+ "model.layers.33.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
280
+ "model.layers.33.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
281
+ "model.layers.33.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
282
+ "model.layers.33.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
283
+ "model.layers.33.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
284
+ "model.layers.33.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
285
+ "model.layers.33.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
286
+ "model.layers.33.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
287
+ "model.layers.33.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
288
+ "model.layers.34.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
289
+ "model.layers.34.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
290
+ "model.layers.34.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
291
+ "model.layers.34.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
292
+ "model.layers.34.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
293
+ "model.layers.34.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
294
+ "model.layers.34.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
295
+ "model.layers.34.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
296
+ "model.layers.34.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
297
+ "model.layers.34.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
298
+ "model.layers.35.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
299
+ "model.layers.35.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
300
+ "model.layers.35.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
301
+ "model.layers.35.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
302
+ "model.layers.35.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
303
+ "model.layers.35.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
304
+ "model.layers.35.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
305
+ "model.layers.35.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
306
+ "model.layers.35.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
307
+ "model.layers.35.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
308
+ "model.layers.36.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
309
+ "model.layers.36.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
310
+ "model.layers.36.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
311
+ "model.layers.36.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
312
+ "model.layers.36.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
313
+ "model.layers.36.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
314
+ "model.layers.36.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
315
+ "model.layers.36.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
316
+ "model.layers.36.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
317
+ "model.layers.36.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
318
+ "model.layers.37.input_layernorm.weight": "pytorch_model-00005-of-00006.bin",
319
+ "model.layers.37.mlp.down_proj.weight": "pytorch_model-00005-of-00006.bin",
320
+ "model.layers.37.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
321
+ "model.layers.37.mlp.up_proj.weight": "pytorch_model-00005-of-00006.bin",
322
+ "model.layers.37.post_attention_layernorm.weight": "pytorch_model-00005-of-00006.bin",
323
+ "model.layers.37.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
324
+ "model.layers.37.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
325
+ "model.layers.37.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
326
+ "model.layers.37.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
327
+ "model.layers.37.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
328
+ "model.layers.38.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
329
+ "model.layers.38.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
330
+ "model.layers.38.mlp.gate_proj.weight": "pytorch_model-00005-of-00006.bin",
331
+ "model.layers.38.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
332
+ "model.layers.38.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
333
+ "model.layers.38.self_attn.k_proj.weight": "pytorch_model-00005-of-00006.bin",
334
+ "model.layers.38.self_attn.o_proj.weight": "pytorch_model-00005-of-00006.bin",
335
+ "model.layers.38.self_attn.q_proj.weight": "pytorch_model-00005-of-00006.bin",
336
+ "model.layers.38.self_attn.rotary_emb.inv_freq": "pytorch_model-00005-of-00006.bin",
337
+ "model.layers.38.self_attn.v_proj.weight": "pytorch_model-00005-of-00006.bin",
338
+ "model.layers.39.input_layernorm.weight": "pytorch_model-00006-of-00006.bin",
339
+ "model.layers.39.mlp.down_proj.weight": "pytorch_model-00006-of-00006.bin",
340
+ "model.layers.39.mlp.gate_proj.weight": "pytorch_model-00006-of-00006.bin",
341
+ "model.layers.39.mlp.up_proj.weight": "pytorch_model-00006-of-00006.bin",
342
+ "model.layers.39.post_attention_layernorm.weight": "pytorch_model-00006-of-00006.bin",
343
+ "model.layers.39.self_attn.k_proj.weight": "pytorch_model-00006-of-00006.bin",
344
+ "model.layers.39.self_attn.o_proj.weight": "pytorch_model-00006-of-00006.bin",
345
+ "model.layers.39.self_attn.q_proj.weight": "pytorch_model-00006-of-00006.bin",
346
+ "model.layers.39.self_attn.rotary_emb.inv_freq": "pytorch_model-00006-of-00006.bin",
347
+ "model.layers.39.self_attn.v_proj.weight": "pytorch_model-00006-of-00006.bin",
348
+ "model.layers.4.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
349
+ "model.layers.4.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
350
+ "model.layers.4.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
351
+ "model.layers.4.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
352
+ "model.layers.4.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
353
+ "model.layers.4.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
354
+ "model.layers.4.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
355
+ "model.layers.4.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
356
+ "model.layers.4.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
357
+ "model.layers.4.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
358
+ "model.layers.5.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
359
+ "model.layers.5.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
360
+ "model.layers.5.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
361
+ "model.layers.5.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
362
+ "model.layers.5.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
363
+ "model.layers.5.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
364
+ "model.layers.5.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
365
+ "model.layers.5.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
366
+ "model.layers.5.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
367
+ "model.layers.5.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
368
+ "model.layers.6.input_layernorm.weight": "pytorch_model-00001-of-00006.bin",
369
+ "model.layers.6.mlp.down_proj.weight": "pytorch_model-00001-of-00006.bin",
370
+ "model.layers.6.mlp.gate_proj.weight": "pytorch_model-00001-of-00006.bin",
371
+ "model.layers.6.mlp.up_proj.weight": "pytorch_model-00001-of-00006.bin",
372
+ "model.layers.6.post_attention_layernorm.weight": "pytorch_model-00001-of-00006.bin",
373
+ "model.layers.6.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
374
+ "model.layers.6.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
375
+ "model.layers.6.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
376
+ "model.layers.6.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
377
+ "model.layers.6.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
378
+ "model.layers.7.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
379
+ "model.layers.7.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
380
+ "model.layers.7.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
381
+ "model.layers.7.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
382
+ "model.layers.7.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
383
+ "model.layers.7.self_attn.k_proj.weight": "pytorch_model-00001-of-00006.bin",
384
+ "model.layers.7.self_attn.o_proj.weight": "pytorch_model-00001-of-00006.bin",
385
+ "model.layers.7.self_attn.q_proj.weight": "pytorch_model-00001-of-00006.bin",
386
+ "model.layers.7.self_attn.rotary_emb.inv_freq": "pytorch_model-00001-of-00006.bin",
387
+ "model.layers.7.self_attn.v_proj.weight": "pytorch_model-00001-of-00006.bin",
388
+ "model.layers.8.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
389
+ "model.layers.8.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
390
+ "model.layers.8.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
391
+ "model.layers.8.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
392
+ "model.layers.8.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
393
+ "model.layers.8.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
394
+ "model.layers.8.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
395
+ "model.layers.8.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
396
+ "model.layers.8.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
397
+ "model.layers.8.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
398
+ "model.layers.9.input_layernorm.weight": "pytorch_model-00002-of-00006.bin",
399
+ "model.layers.9.mlp.down_proj.weight": "pytorch_model-00002-of-00006.bin",
400
+ "model.layers.9.mlp.gate_proj.weight": "pytorch_model-00002-of-00006.bin",
401
+ "model.layers.9.mlp.up_proj.weight": "pytorch_model-00002-of-00006.bin",
402
+ "model.layers.9.post_attention_layernorm.weight": "pytorch_model-00002-of-00006.bin",
403
+ "model.layers.9.self_attn.k_proj.weight": "pytorch_model-00002-of-00006.bin",
404
+ "model.layers.9.self_attn.o_proj.weight": "pytorch_model-00002-of-00006.bin",
405
+ "model.layers.9.self_attn.q_proj.weight": "pytorch_model-00002-of-00006.bin",
406
+ "model.layers.9.self_attn.rotary_emb.inv_freq": "pytorch_model-00002-of-00006.bin",
407
+ "model.layers.9.self_attn.v_proj.weight": "pytorch_model-00002-of-00006.bin",
408
+ "model.norm.weight": "pytorch_model-00006-of-00006.bin"
409
+ }
410
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token": {
3
+ "content": "<s>",
4
+ "lstrip": false,
5
+ "normalized": false,
6
+ "rstrip": false,
7
+ "single_word": false
8
+ },
9
+ "eos_token": {
10
+ "content": "</s>",
11
+ "lstrip": false,
12
+ "normalized": false,
13
+ "rstrip": false,
14
+ "single_word": false
15
+ },
16
+ "pad_token": "<unk>",
17
+ "unk_token": {
18
+ "content": "<unk>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ }
24
+ }
tokenizer.model ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e556afd44213b6bd1be2b850ebbbd98f5481437a8021afaf58ee7fb1818d347
3
+ size 499723
tokenizer_config.json ADDED
@@ -0,0 +1,35 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": true,
3
+ "add_eos_token": false,
4
+ "bos_token": {
5
+ "__type": "AddedToken",
6
+ "content": "<s>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false
11
+ },
12
+ "clean_up_tokenization_spaces": false,
13
+ "eos_token": {
14
+ "__type": "AddedToken",
15
+ "content": "</s>",
16
+ "lstrip": false,
17
+ "normalized": false,
18
+ "rstrip": false,
19
+ "single_word": false
20
+ },
21
+ "legacy": false,
22
+ "model_max_length": 4096,
23
+ "pad_token": null,
24
+ "padding_side": "right",
25
+ "sp_model_kwargs": {},
26
+ "tokenizer_class": "LlamaTokenizer",
27
+ "unk_token": {
28
+ "__type": "AddedToken",
29
+ "content": "<unk>",
30
+ "lstrip": false,
31
+ "normalized": false,
32
+ "rstrip": false,
33
+ "single_word": false
34
+ }
35
+ }
trainer_state.json ADDED
@@ -0,0 +1,3823 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 2.989374262101535,
5
+ "global_step": 633,
6
+ "is_hyper_param_search": false,
7
+ "is_local_process_zero": true,
8
+ "is_world_process_zero": true,
9
+ "log_history": [
10
+ {
11
+ "epoch": 0.0,
12
+ "learning_rate": 7.692307692307694e-07,
13
+ "loss": 0.8141,
14
+ "step": 1
15
+ },
16
+ {
17
+ "epoch": 0.01,
18
+ "learning_rate": 1.5384615384615387e-06,
19
+ "loss": 0.7997,
20
+ "step": 2
21
+ },
22
+ {
23
+ "epoch": 0.01,
24
+ "learning_rate": 2.307692307692308e-06,
25
+ "loss": 0.8205,
26
+ "step": 3
27
+ },
28
+ {
29
+ "epoch": 0.02,
30
+ "learning_rate": 3.0769230769230774e-06,
31
+ "loss": 0.771,
32
+ "step": 4
33
+ },
34
+ {
35
+ "epoch": 0.02,
36
+ "learning_rate": 3.846153846153847e-06,
37
+ "loss": 0.7829,
38
+ "step": 5
39
+ },
40
+ {
41
+ "epoch": 0.03,
42
+ "learning_rate": 4.615384615384616e-06,
43
+ "loss": 0.728,
44
+ "step": 6
45
+ },
46
+ {
47
+ "epoch": 0.03,
48
+ "learning_rate": 5.384615384615385e-06,
49
+ "loss": 0.6903,
50
+ "step": 7
51
+ },
52
+ {
53
+ "epoch": 0.04,
54
+ "learning_rate": 6.153846153846155e-06,
55
+ "loss": 0.6769,
56
+ "step": 8
57
+ },
58
+ {
59
+ "epoch": 0.04,
60
+ "learning_rate": 6.923076923076923e-06,
61
+ "loss": 0.7049,
62
+ "step": 9
63
+ },
64
+ {
65
+ "epoch": 0.05,
66
+ "learning_rate": 7.692307692307694e-06,
67
+ "loss": 0.7011,
68
+ "step": 10
69
+ },
70
+ {
71
+ "epoch": 0.05,
72
+ "learning_rate": 8.461538461538462e-06,
73
+ "loss": 0.6727,
74
+ "step": 11
75
+ },
76
+ {
77
+ "epoch": 0.06,
78
+ "learning_rate": 9.230769230769232e-06,
79
+ "loss": 0.6287,
80
+ "step": 12
81
+ },
82
+ {
83
+ "epoch": 0.06,
84
+ "learning_rate": 1e-05,
85
+ "loss": 0.622,
86
+ "step": 13
87
+ },
88
+ {
89
+ "epoch": 0.07,
90
+ "learning_rate": 1.076923076923077e-05,
91
+ "loss": 0.667,
92
+ "step": 14
93
+ },
94
+ {
95
+ "epoch": 0.07,
96
+ "learning_rate": 1.1538461538461538e-05,
97
+ "loss": 0.588,
98
+ "step": 15
99
+ },
100
+ {
101
+ "epoch": 0.08,
102
+ "learning_rate": 1.230769230769231e-05,
103
+ "loss": 0.6101,
104
+ "step": 16
105
+ },
106
+ {
107
+ "epoch": 0.08,
108
+ "learning_rate": 1.3076923076923078e-05,
109
+ "loss": 0.5779,
110
+ "step": 17
111
+ },
112
+ {
113
+ "epoch": 0.09,
114
+ "learning_rate": 1.3846153846153847e-05,
115
+ "loss": 0.605,
116
+ "step": 18
117
+ },
118
+ {
119
+ "epoch": 0.09,
120
+ "learning_rate": 1.4615384615384615e-05,
121
+ "loss": 0.6535,
122
+ "step": 19
123
+ },
124
+ {
125
+ "epoch": 0.09,
126
+ "learning_rate": 1.5384615384615387e-05,
127
+ "loss": 0.5979,
128
+ "step": 20
129
+ },
130
+ {
131
+ "epoch": 0.1,
132
+ "learning_rate": 1.6153846153846154e-05,
133
+ "loss": 0.5847,
134
+ "step": 21
135
+ },
136
+ {
137
+ "epoch": 0.1,
138
+ "learning_rate": 1.6923076923076924e-05,
139
+ "loss": 0.6089,
140
+ "step": 22
141
+ },
142
+ {
143
+ "epoch": 0.11,
144
+ "learning_rate": 1.7692307692307694e-05,
145
+ "loss": 0.6198,
146
+ "step": 23
147
+ },
148
+ {
149
+ "epoch": 0.11,
150
+ "learning_rate": 1.8461538461538465e-05,
151
+ "loss": 0.6427,
152
+ "step": 24
153
+ },
154
+ {
155
+ "epoch": 0.12,
156
+ "learning_rate": 1.923076923076923e-05,
157
+ "loss": 0.624,
158
+ "step": 25
159
+ },
160
+ {
161
+ "epoch": 0.12,
162
+ "learning_rate": 2e-05,
163
+ "loss": 0.5898,
164
+ "step": 26
165
+ },
166
+ {
167
+ "epoch": 0.13,
168
+ "learning_rate": 1.9999866065827706e-05,
169
+ "loss": 0.5527,
170
+ "step": 27
171
+ },
172
+ {
173
+ "epoch": 0.13,
174
+ "learning_rate": 1.9999464266898485e-05,
175
+ "loss": 0.5825,
176
+ "step": 28
177
+ },
178
+ {
179
+ "epoch": 0.14,
180
+ "learning_rate": 1.9998794613975263e-05,
181
+ "loss": 0.5821,
182
+ "step": 29
183
+ },
184
+ {
185
+ "epoch": 0.14,
186
+ "learning_rate": 1.999785712499592e-05,
187
+ "loss": 0.5916,
188
+ "step": 30
189
+ },
190
+ {
191
+ "epoch": 0.15,
192
+ "learning_rate": 1.9996651825072826e-05,
193
+ "loss": 0.5981,
194
+ "step": 31
195
+ },
196
+ {
197
+ "epoch": 0.15,
198
+ "learning_rate": 1.999517874649214e-05,
199
+ "loss": 0.5911,
200
+ "step": 32
201
+ },
202
+ {
203
+ "epoch": 0.16,
204
+ "learning_rate": 1.9993437928712977e-05,
205
+ "loss": 0.5905,
206
+ "step": 33
207
+ },
208
+ {
209
+ "epoch": 0.16,
210
+ "learning_rate": 1.9991429418366343e-05,
211
+ "loss": 0.5715,
212
+ "step": 34
213
+ },
214
+ {
215
+ "epoch": 0.17,
216
+ "learning_rate": 1.9989153269253857e-05,
217
+ "loss": 0.5772,
218
+ "step": 35
219
+ },
220
+ {
221
+ "epoch": 0.17,
222
+ "learning_rate": 1.9986609542346364e-05,
223
+ "loss": 0.606,
224
+ "step": 36
225
+ },
226
+ {
227
+ "epoch": 0.17,
228
+ "learning_rate": 1.9983798305782243e-05,
229
+ "loss": 0.5886,
230
+ "step": 37
231
+ },
232
+ {
233
+ "epoch": 0.18,
234
+ "learning_rate": 1.998071963486563e-05,
235
+ "loss": 0.5913,
236
+ "step": 38
237
+ },
238
+ {
239
+ "epoch": 0.18,
240
+ "learning_rate": 1.9977373612064374e-05,
241
+ "loss": 0.5966,
242
+ "step": 39
243
+ },
244
+ {
245
+ "epoch": 0.19,
246
+ "learning_rate": 1.9973760327007826e-05,
247
+ "loss": 0.5901,
248
+ "step": 40
249
+ },
250
+ {
251
+ "epoch": 0.19,
252
+ "learning_rate": 1.996987987648446e-05,
253
+ "loss": 0.6022,
254
+ "step": 41
255
+ },
256
+ {
257
+ "epoch": 0.2,
258
+ "learning_rate": 1.9965732364439265e-05,
259
+ "loss": 0.5378,
260
+ "step": 42
261
+ },
262
+ {
263
+ "epoch": 0.2,
264
+ "learning_rate": 1.9961317901970953e-05,
265
+ "loss": 0.6319,
266
+ "step": 43
267
+ },
268
+ {
269
+ "epoch": 0.21,
270
+ "learning_rate": 1.9956636607329006e-05,
271
+ "loss": 0.6105,
272
+ "step": 44
273
+ },
274
+ {
275
+ "epoch": 0.21,
276
+ "learning_rate": 1.9951688605910478e-05,
277
+ "loss": 0.5684,
278
+ "step": 45
279
+ },
280
+ {
281
+ "epoch": 0.22,
282
+ "learning_rate": 1.9946474030256676e-05,
283
+ "loss": 0.5819,
284
+ "step": 46
285
+ },
286
+ {
287
+ "epoch": 0.22,
288
+ "learning_rate": 1.994099302004957e-05,
289
+ "loss": 0.6302,
290
+ "step": 47
291
+ },
292
+ {
293
+ "epoch": 0.23,
294
+ "learning_rate": 1.993524572210807e-05,
295
+ "loss": 0.607,
296
+ "step": 48
297
+ },
298
+ {
299
+ "epoch": 0.23,
300
+ "learning_rate": 1.99292322903841e-05,
301
+ "loss": 0.573,
302
+ "step": 49
303
+ },
304
+ {
305
+ "epoch": 0.24,
306
+ "learning_rate": 1.992295288595846e-05,
307
+ "loss": 0.5968,
308
+ "step": 50
309
+ },
310
+ {
311
+ "epoch": 0.24,
312
+ "learning_rate": 1.9916407677036508e-05,
313
+ "loss": 0.5422,
314
+ "step": 51
315
+ },
316
+ {
317
+ "epoch": 0.25,
318
+ "learning_rate": 1.990959683894368e-05,
319
+ "loss": 0.571,
320
+ "step": 52
321
+ },
322
+ {
323
+ "epoch": 0.25,
324
+ "learning_rate": 1.990252055412077e-05,
325
+ "loss": 0.5726,
326
+ "step": 53
327
+ },
328
+ {
329
+ "epoch": 0.26,
330
+ "learning_rate": 1.9895179012119044e-05,
331
+ "loss": 0.6013,
332
+ "step": 54
333
+ },
334
+ {
335
+ "epoch": 0.26,
336
+ "learning_rate": 1.988757240959517e-05,
337
+ "loss": 0.5594,
338
+ "step": 55
339
+ },
340
+ {
341
+ "epoch": 0.26,
342
+ "learning_rate": 1.9879700950305957e-05,
343
+ "loss": 0.544,
344
+ "step": 56
345
+ },
346
+ {
347
+ "epoch": 0.27,
348
+ "learning_rate": 1.9871564845102877e-05,
349
+ "loss": 0.5753,
350
+ "step": 57
351
+ },
352
+ {
353
+ "epoch": 0.27,
354
+ "learning_rate": 1.9863164311926433e-05,
355
+ "loss": 0.587,
356
+ "step": 58
357
+ },
358
+ {
359
+ "epoch": 0.28,
360
+ "learning_rate": 1.9854499575800324e-05,
361
+ "loss": 0.5626,
362
+ "step": 59
363
+ },
364
+ {
365
+ "epoch": 0.28,
366
+ "learning_rate": 1.9845570868825394e-05,
367
+ "loss": 0.6279,
368
+ "step": 60
369
+ },
370
+ {
371
+ "epoch": 0.29,
372
+ "learning_rate": 1.983637843017344e-05,
373
+ "loss": 0.5529,
374
+ "step": 61
375
+ },
376
+ {
377
+ "epoch": 0.29,
378
+ "learning_rate": 1.98269225060808e-05,
379
+ "loss": 0.5802,
380
+ "step": 62
381
+ },
382
+ {
383
+ "epoch": 0.3,
384
+ "learning_rate": 1.981720334984174e-05,
385
+ "loss": 0.5281,
386
+ "step": 63
387
+ },
388
+ {
389
+ "epoch": 0.3,
390
+ "learning_rate": 1.980722122180169e-05,
391
+ "loss": 0.546,
392
+ "step": 64
393
+ },
394
+ {
395
+ "epoch": 0.31,
396
+ "learning_rate": 1.9796976389350266e-05,
397
+ "loss": 0.5609,
398
+ "step": 65
399
+ },
400
+ {
401
+ "epoch": 0.31,
402
+ "learning_rate": 1.9786469126914097e-05,
403
+ "loss": 0.6092,
404
+ "step": 66
405
+ },
406
+ {
407
+ "epoch": 0.32,
408
+ "learning_rate": 1.9775699715949484e-05,
409
+ "loss": 0.583,
410
+ "step": 67
411
+ },
412
+ {
413
+ "epoch": 0.32,
414
+ "learning_rate": 1.9764668444934853e-05,
415
+ "loss": 0.5242,
416
+ "step": 68
417
+ },
418
+ {
419
+ "epoch": 0.33,
420
+ "learning_rate": 1.9753375609363035e-05,
421
+ "loss": 0.5283,
422
+ "step": 69
423
+ },
424
+ {
425
+ "epoch": 0.33,
426
+ "learning_rate": 1.9741821511733348e-05,
427
+ "loss": 0.5574,
428
+ "step": 70
429
+ },
430
+ {
431
+ "epoch": 0.34,
432
+ "learning_rate": 1.973000646154349e-05,
433
+ "loss": 0.5497,
434
+ "step": 71
435
+ },
436
+ {
437
+ "epoch": 0.34,
438
+ "learning_rate": 1.971793077528126e-05,
439
+ "loss": 0.6023,
440
+ "step": 72
441
+ },
442
+ {
443
+ "epoch": 0.34,
444
+ "learning_rate": 1.970559477641606e-05,
445
+ "loss": 0.5862,
446
+ "step": 73
447
+ },
448
+ {
449
+ "epoch": 0.35,
450
+ "learning_rate": 1.9692998795390257e-05,
451
+ "loss": 0.5701,
452
+ "step": 74
453
+ },
454
+ {
455
+ "epoch": 0.35,
456
+ "learning_rate": 1.9680143169610303e-05,
457
+ "loss": 0.552,
458
+ "step": 75
459
+ },
460
+ {
461
+ "epoch": 0.36,
462
+ "learning_rate": 1.966702824343772e-05,
463
+ "loss": 0.5605,
464
+ "step": 76
465
+ },
466
+ {
467
+ "epoch": 0.36,
468
+ "learning_rate": 1.9653654368179867e-05,
469
+ "loss": 0.5688,
470
+ "step": 77
471
+ },
472
+ {
473
+ "epoch": 0.37,
474
+ "learning_rate": 1.9640021902080523e-05,
475
+ "loss": 0.5613,
476
+ "step": 78
477
+ },
478
+ {
479
+ "epoch": 0.37,
480
+ "learning_rate": 1.9626131210310298e-05,
481
+ "loss": 0.5166,
482
+ "step": 79
483
+ },
484
+ {
485
+ "epoch": 0.38,
486
+ "learning_rate": 1.961198266495686e-05,
487
+ "loss": 0.6149,
488
+ "step": 80
489
+ },
490
+ {
491
+ "epoch": 0.38,
492
+ "learning_rate": 1.959757664501495e-05,
493
+ "loss": 0.5569,
494
+ "step": 81
495
+ },
496
+ {
497
+ "epoch": 0.39,
498
+ "learning_rate": 1.958291353637624e-05,
499
+ "loss": 0.5411,
500
+ "step": 82
501
+ },
502
+ {
503
+ "epoch": 0.39,
504
+ "learning_rate": 1.9567993731818988e-05,
505
+ "loss": 0.5536,
506
+ "step": 83
507
+ },
508
+ {
509
+ "epoch": 0.4,
510
+ "learning_rate": 1.955281763099753e-05,
511
+ "loss": 0.5526,
512
+ "step": 84
513
+ },
514
+ {
515
+ "epoch": 0.4,
516
+ "learning_rate": 1.9537385640431568e-05,
517
+ "loss": 0.5495,
518
+ "step": 85
519
+ },
520
+ {
521
+ "epoch": 0.41,
522
+ "learning_rate": 1.9521698173495283e-05,
523
+ "loss": 0.4943,
524
+ "step": 86
525
+ },
526
+ {
527
+ "epoch": 0.41,
528
+ "learning_rate": 1.950575565040625e-05,
529
+ "loss": 0.5292,
530
+ "step": 87
531
+ },
532
+ {
533
+ "epoch": 0.42,
534
+ "learning_rate": 1.9489558498214197e-05,
535
+ "loss": 0.5144,
536
+ "step": 88
537
+ },
538
+ {
539
+ "epoch": 0.42,
540
+ "learning_rate": 1.9473107150789555e-05,
541
+ "loss": 0.5787,
542
+ "step": 89
543
+ },
544
+ {
545
+ "epoch": 0.43,
546
+ "learning_rate": 1.9456402048811857e-05,
547
+ "loss": 0.577,
548
+ "step": 90
549
+ },
550
+ {
551
+ "epoch": 0.43,
552
+ "learning_rate": 1.9439443639757883e-05,
553
+ "loss": 0.5677,
554
+ "step": 91
555
+ },
556
+ {
557
+ "epoch": 0.43,
558
+ "learning_rate": 1.942223237788975e-05,
559
+ "loss": 0.5724,
560
+ "step": 92
561
+ },
562
+ {
563
+ "epoch": 0.44,
564
+ "learning_rate": 1.9404768724242667e-05,
565
+ "loss": 0.5463,
566
+ "step": 93
567
+ },
568
+ {
569
+ "epoch": 0.44,
570
+ "learning_rate": 1.938705314661264e-05,
571
+ "loss": 0.5596,
572
+ "step": 94
573
+ },
574
+ {
575
+ "epoch": 0.45,
576
+ "learning_rate": 1.936908611954391e-05,
577
+ "loss": 0.5057,
578
+ "step": 95
579
+ },
580
+ {
581
+ "epoch": 0.45,
582
+ "learning_rate": 1.935086812431626e-05,
583
+ "loss": 0.5446,
584
+ "step": 96
585
+ },
586
+ {
587
+ "epoch": 0.46,
588
+ "learning_rate": 1.9332399648932113e-05,
589
+ "loss": 0.5724,
590
+ "step": 97
591
+ },
592
+ {
593
+ "epoch": 0.46,
594
+ "learning_rate": 1.931368118810346e-05,
595
+ "loss": 0.5695,
596
+ "step": 98
597
+ },
598
+ {
599
+ "epoch": 0.47,
600
+ "learning_rate": 1.9294713243238608e-05,
601
+ "loss": 0.5777,
602
+ "step": 99
603
+ },
604
+ {
605
+ "epoch": 0.47,
606
+ "learning_rate": 1.9275496322428764e-05,
607
+ "loss": 0.5848,
608
+ "step": 100
609
+ },
610
+ {
611
+ "epoch": 0.48,
612
+ "learning_rate": 1.92560309404344e-05,
613
+ "loss": 0.5614,
614
+ "step": 101
615
+ },
616
+ {
617
+ "epoch": 0.48,
618
+ "learning_rate": 1.9236317618671486e-05,
619
+ "loss": 0.5635,
620
+ "step": 102
621
+ },
622
+ {
623
+ "epoch": 0.49,
624
+ "learning_rate": 1.92163568851975e-05,
625
+ "loss": 0.5533,
626
+ "step": 103
627
+ },
628
+ {
629
+ "epoch": 0.49,
630
+ "learning_rate": 1.9196149274697316e-05,
631
+ "loss": 0.5312,
632
+ "step": 104
633
+ },
634
+ {
635
+ "epoch": 0.5,
636
+ "learning_rate": 1.917569532846884e-05,
637
+ "loss": 0.5238,
638
+ "step": 105
639
+ },
640
+ {
641
+ "epoch": 0.5,
642
+ "learning_rate": 1.915499559440855e-05,
643
+ "loss": 0.5852,
644
+ "step": 106
645
+ },
646
+ {
647
+ "epoch": 0.51,
648
+ "learning_rate": 1.91340506269968e-05,
649
+ "loss": 0.5488,
650
+ "step": 107
651
+ },
652
+ {
653
+ "epoch": 0.51,
654
+ "learning_rate": 1.911286098728296e-05,
655
+ "loss": 0.5122,
656
+ "step": 108
657
+ },
658
+ {
659
+ "epoch": 0.51,
660
+ "learning_rate": 1.9091427242870396e-05,
661
+ "loss": 0.5798,
662
+ "step": 109
663
+ },
664
+ {
665
+ "epoch": 0.52,
666
+ "learning_rate": 1.9069749967901278e-05,
667
+ "loss": 0.5289,
668
+ "step": 110
669
+ },
670
+ {
671
+ "epoch": 0.52,
672
+ "learning_rate": 1.9047829743041184e-05,
673
+ "loss": 0.5337,
674
+ "step": 111
675
+ },
676
+ {
677
+ "epoch": 0.53,
678
+ "learning_rate": 1.9025667155463542e-05,
679
+ "loss": 0.5498,
680
+ "step": 112
681
+ },
682
+ {
683
+ "epoch": 0.53,
684
+ "learning_rate": 1.900326279883392e-05,
685
+ "loss": 0.5283,
686
+ "step": 113
687
+ },
688
+ {
689
+ "epoch": 0.54,
690
+ "learning_rate": 1.8980617273294112e-05,
691
+ "loss": 0.582,
692
+ "step": 114
693
+ },
694
+ {
695
+ "epoch": 0.54,
696
+ "learning_rate": 1.895773118544606e-05,
697
+ "loss": 0.5539,
698
+ "step": 115
699
+ },
700
+ {
701
+ "epoch": 0.55,
702
+ "learning_rate": 1.893460514833561e-05,
703
+ "loss": 0.5655,
704
+ "step": 116
705
+ },
706
+ {
707
+ "epoch": 0.55,
708
+ "learning_rate": 1.891123978143609e-05,
709
+ "loss": 0.5467,
710
+ "step": 117
711
+ },
712
+ {
713
+ "epoch": 0.56,
714
+ "learning_rate": 1.8887635710631716e-05,
715
+ "loss": 0.5382,
716
+ "step": 118
717
+ },
718
+ {
719
+ "epoch": 0.56,
720
+ "learning_rate": 1.8863793568200822e-05,
721
+ "loss": 0.5203,
722
+ "step": 119
723
+ },
724
+ {
725
+ "epoch": 0.57,
726
+ "learning_rate": 1.883971399279894e-05,
727
+ "loss": 0.5751,
728
+ "step": 120
729
+ },
730
+ {
731
+ "epoch": 0.57,
732
+ "learning_rate": 1.881539762944166e-05,
733
+ "loss": 0.5355,
734
+ "step": 121
735
+ },
736
+ {
737
+ "epoch": 0.58,
738
+ "learning_rate": 1.8790845129487383e-05,
739
+ "loss": 0.5459,
740
+ "step": 122
741
+ },
742
+ {
743
+ "epoch": 0.58,
744
+ "learning_rate": 1.8766057150619865e-05,
745
+ "loss": 0.5375,
746
+ "step": 123
747
+ },
748
+ {
749
+ "epoch": 0.59,
750
+ "learning_rate": 1.874103435683059e-05,
751
+ "loss": 0.5679,
752
+ "step": 124
753
+ },
754
+ {
755
+ "epoch": 0.59,
756
+ "learning_rate": 1.8715777418400996e-05,
757
+ "loss": 0.5499,
758
+ "step": 125
759
+ },
760
+ {
761
+ "epoch": 0.6,
762
+ "learning_rate": 1.869028701188451e-05,
763
+ "loss": 0.5205,
764
+ "step": 126
765
+ },
766
+ {
767
+ "epoch": 0.6,
768
+ "learning_rate": 1.866456382008843e-05,
769
+ "loss": 0.5552,
770
+ "step": 127
771
+ },
772
+ {
773
+ "epoch": 0.6,
774
+ "learning_rate": 1.8638608532055635e-05,
775
+ "loss": 0.5441,
776
+ "step": 128
777
+ },
778
+ {
779
+ "epoch": 0.61,
780
+ "learning_rate": 1.8612421843046135e-05,
781
+ "loss": 0.5097,
782
+ "step": 129
783
+ },
784
+ {
785
+ "epoch": 0.61,
786
+ "learning_rate": 1.8586004454518424e-05,
787
+ "loss": 0.5389,
788
+ "step": 130
789
+ },
790
+ {
791
+ "epoch": 0.62,
792
+ "learning_rate": 1.8559357074110727e-05,
793
+ "loss": 0.5757,
794
+ "step": 131
795
+ },
796
+ {
797
+ "epoch": 0.62,
798
+ "learning_rate": 1.8532480415622002e-05,
799
+ "loss": 0.5699,
800
+ "step": 132
801
+ },
802
+ {
803
+ "epoch": 0.63,
804
+ "learning_rate": 1.8505375198992856e-05,
805
+ "loss": 0.5514,
806
+ "step": 133
807
+ },
808
+ {
809
+ "epoch": 0.63,
810
+ "learning_rate": 1.847804215028624e-05,
811
+ "loss": 0.5768,
812
+ "step": 134
813
+ },
814
+ {
815
+ "epoch": 0.64,
816
+ "learning_rate": 1.8450482001668004e-05,
817
+ "loss": 0.5466,
818
+ "step": 135
819
+ },
820
+ {
821
+ "epoch": 0.64,
822
+ "learning_rate": 1.8422695491387284e-05,
823
+ "loss": 0.5604,
824
+ "step": 136
825
+ },
826
+ {
827
+ "epoch": 0.65,
828
+ "learning_rate": 1.8394683363756736e-05,
829
+ "loss": 0.5363,
830
+ "step": 137
831
+ },
832
+ {
833
+ "epoch": 0.65,
834
+ "learning_rate": 1.836644636913258e-05,
835
+ "loss": 0.5504,
836
+ "step": 138
837
+ },
838
+ {
839
+ "epoch": 0.66,
840
+ "learning_rate": 1.8337985263894523e-05,
841
+ "loss": 0.5821,
842
+ "step": 139
843
+ },
844
+ {
845
+ "epoch": 0.66,
846
+ "learning_rate": 1.8309300810425475e-05,
847
+ "loss": 0.5287,
848
+ "step": 140
849
+ },
850
+ {
851
+ "epoch": 0.67,
852
+ "learning_rate": 1.8280393777091143e-05,
853
+ "loss": 0.5197,
854
+ "step": 141
855
+ },
856
+ {
857
+ "epoch": 0.67,
858
+ "learning_rate": 1.8251264938219443e-05,
859
+ "loss": 0.5421,
860
+ "step": 142
861
+ },
862
+ {
863
+ "epoch": 0.68,
864
+ "learning_rate": 1.8221915074079764e-05,
865
+ "loss": 0.5258,
866
+ "step": 143
867
+ },
868
+ {
869
+ "epoch": 0.68,
870
+ "learning_rate": 1.8192344970862055e-05,
871
+ "loss": 0.4827,
872
+ "step": 144
873
+ },
874
+ {
875
+ "epoch": 0.68,
876
+ "learning_rate": 1.8162555420655774e-05,
877
+ "loss": 0.5581,
878
+ "step": 145
879
+ },
880
+ {
881
+ "epoch": 0.69,
882
+ "learning_rate": 1.8132547221428675e-05,
883
+ "loss": 0.5758,
884
+ "step": 146
885
+ },
886
+ {
887
+ "epoch": 0.69,
888
+ "learning_rate": 1.8102321177005426e-05,
889
+ "loss": 0.5494,
890
+ "step": 147
891
+ },
892
+ {
893
+ "epoch": 0.7,
894
+ "learning_rate": 1.8071878097046064e-05,
895
+ "loss": 0.5319,
896
+ "step": 148
897
+ },
898
+ {
899
+ "epoch": 0.7,
900
+ "learning_rate": 1.804121879702434e-05,
901
+ "loss": 0.5264,
902
+ "step": 149
903
+ },
904
+ {
905
+ "epoch": 0.71,
906
+ "learning_rate": 1.8010344098205853e-05,
907
+ "loss": 0.6008,
908
+ "step": 150
909
+ },
910
+ {
911
+ "epoch": 0.71,
912
+ "learning_rate": 1.7979254827626037e-05,
913
+ "loss": 0.5324,
914
+ "step": 151
915
+ },
916
+ {
917
+ "epoch": 0.72,
918
+ "learning_rate": 1.7947951818068047e-05,
919
+ "loss": 0.5073,
920
+ "step": 152
921
+ },
922
+ {
923
+ "epoch": 0.72,
924
+ "learning_rate": 1.7916435908040413e-05,
925
+ "loss": 0.568,
926
+ "step": 153
927
+ },
928
+ {
929
+ "epoch": 0.73,
930
+ "learning_rate": 1.78847079417546e-05,
931
+ "loss": 0.5649,
932
+ "step": 154
933
+ },
934
+ {
935
+ "epoch": 0.73,
936
+ "learning_rate": 1.7852768769102395e-05,
937
+ "loss": 0.5721,
938
+ "step": 155
939
+ },
940
+ {
941
+ "epoch": 0.74,
942
+ "learning_rate": 1.7820619245633116e-05,
943
+ "loss": 0.5323,
944
+ "step": 156
945
+ },
946
+ {
947
+ "epoch": 0.74,
948
+ "learning_rate": 1.7788260232530735e-05,
949
+ "loss": 0.5106,
950
+ "step": 157
951
+ },
952
+ {
953
+ "epoch": 0.75,
954
+ "learning_rate": 1.7755692596590778e-05,
955
+ "loss": 0.5722,
956
+ "step": 158
957
+ },
958
+ {
959
+ "epoch": 0.75,
960
+ "learning_rate": 1.772291721019712e-05,
961
+ "loss": 0.566,
962
+ "step": 159
963
+ },
964
+ {
965
+ "epoch": 0.76,
966
+ "learning_rate": 1.7689934951298608e-05,
967
+ "loss": 0.5641,
968
+ "step": 160
969
+ },
970
+ {
971
+ "epoch": 0.76,
972
+ "learning_rate": 1.7656746703385547e-05,
973
+ "loss": 0.564,
974
+ "step": 161
975
+ },
976
+ {
977
+ "epoch": 0.77,
978
+ "learning_rate": 1.7623353355466046e-05,
979
+ "loss": 0.5586,
980
+ "step": 162
981
+ },
982
+ {
983
+ "epoch": 0.77,
984
+ "learning_rate": 1.7589755802042188e-05,
985
+ "loss": 0.5621,
986
+ "step": 163
987
+ },
988
+ {
989
+ "epoch": 0.77,
990
+ "learning_rate": 1.755595494308607e-05,
991
+ "loss": 0.529,
992
+ "step": 164
993
+ },
994
+ {
995
+ "epoch": 0.78,
996
+ "learning_rate": 1.752195168401571e-05,
997
+ "loss": 0.5255,
998
+ "step": 165
999
+ },
1000
+ {
1001
+ "epoch": 0.78,
1002
+ "learning_rate": 1.748774693567078e-05,
1003
+ "loss": 0.5291,
1004
+ "step": 166
1005
+ },
1006
+ {
1007
+ "epoch": 0.79,
1008
+ "learning_rate": 1.7453341614288205e-05,
1009
+ "loss": 0.5214,
1010
+ "step": 167
1011
+ },
1012
+ {
1013
+ "epoch": 0.79,
1014
+ "learning_rate": 1.7418736641477636e-05,
1015
+ "loss": 0.5137,
1016
+ "step": 168
1017
+ },
1018
+ {
1019
+ "epoch": 0.8,
1020
+ "learning_rate": 1.7383932944196756e-05,
1021
+ "loss": 0.5646,
1022
+ "step": 169
1023
+ },
1024
+ {
1025
+ "epoch": 0.8,
1026
+ "learning_rate": 1.7348931454726443e-05,
1027
+ "loss": 0.5098,
1028
+ "step": 170
1029
+ },
1030
+ {
1031
+ "epoch": 0.81,
1032
+ "learning_rate": 1.7313733110645793e-05,
1033
+ "loss": 0.5085,
1034
+ "step": 171
1035
+ },
1036
+ {
1037
+ "epoch": 0.81,
1038
+ "learning_rate": 1.727833885480703e-05,
1039
+ "loss": 0.486,
1040
+ "step": 172
1041
+ },
1042
+ {
1043
+ "epoch": 0.82,
1044
+ "learning_rate": 1.7242749635310222e-05,
1045
+ "loss": 0.5423,
1046
+ "step": 173
1047
+ },
1048
+ {
1049
+ "epoch": 0.82,
1050
+ "learning_rate": 1.72069664054779e-05,
1051
+ "loss": 0.5385,
1052
+ "step": 174
1053
+ },
1054
+ {
1055
+ "epoch": 0.83,
1056
+ "learning_rate": 1.717099012382952e-05,
1057
+ "loss": 0.5095,
1058
+ "step": 175
1059
+ },
1060
+ {
1061
+ "epoch": 0.83,
1062
+ "learning_rate": 1.7134821754055785e-05,
1063
+ "loss": 0.5331,
1064
+ "step": 176
1065
+ },
1066
+ {
1067
+ "epoch": 0.84,
1068
+ "learning_rate": 1.7098462264992823e-05,
1069
+ "loss": 0.504,
1070
+ "step": 177
1071
+ },
1072
+ {
1073
+ "epoch": 0.84,
1074
+ "learning_rate": 1.7061912630596252e-05,
1075
+ "loss": 0.5467,
1076
+ "step": 178
1077
+ },
1078
+ {
1079
+ "epoch": 0.85,
1080
+ "learning_rate": 1.702517382991508e-05,
1081
+ "loss": 0.5496,
1082
+ "step": 179
1083
+ },
1084
+ {
1085
+ "epoch": 0.85,
1086
+ "learning_rate": 1.6988246847065474e-05,
1087
+ "loss": 0.5497,
1088
+ "step": 180
1089
+ },
1090
+ {
1091
+ "epoch": 0.85,
1092
+ "learning_rate": 1.695113267120441e-05,
1093
+ "loss": 0.4827,
1094
+ "step": 181
1095
+ },
1096
+ {
1097
+ "epoch": 0.86,
1098
+ "learning_rate": 1.6913832296503187e-05,
1099
+ "loss": 0.5319,
1100
+ "step": 182
1101
+ },
1102
+ {
1103
+ "epoch": 0.86,
1104
+ "learning_rate": 1.6876346722120747e-05,
1105
+ "loss": 0.5512,
1106
+ "step": 183
1107
+ },
1108
+ {
1109
+ "epoch": 0.87,
1110
+ "learning_rate": 1.683867695217698e-05,
1111
+ "loss": 0.533,
1112
+ "step": 184
1113
+ },
1114
+ {
1115
+ "epoch": 0.87,
1116
+ "learning_rate": 1.680082399572577e-05,
1117
+ "loss": 0.4947,
1118
+ "step": 185
1119
+ },
1120
+ {
1121
+ "epoch": 0.88,
1122
+ "learning_rate": 1.6762788866728e-05,
1123
+ "loss": 0.5173,
1124
+ "step": 186
1125
+ },
1126
+ {
1127
+ "epoch": 0.88,
1128
+ "learning_rate": 1.672457258402437e-05,
1129
+ "loss": 0.5161,
1130
+ "step": 187
1131
+ },
1132
+ {
1133
+ "epoch": 0.89,
1134
+ "learning_rate": 1.6686176171308125e-05,
1135
+ "loss": 0.5568,
1136
+ "step": 188
1137
+ },
1138
+ {
1139
+ "epoch": 0.89,
1140
+ "learning_rate": 1.6647600657097613e-05,
1141
+ "loss": 0.5217,
1142
+ "step": 189
1143
+ },
1144
+ {
1145
+ "epoch": 0.9,
1146
+ "learning_rate": 1.6608847074708744e-05,
1147
+ "loss": 0.5489,
1148
+ "step": 190
1149
+ },
1150
+ {
1151
+ "epoch": 0.9,
1152
+ "learning_rate": 1.656991646222731e-05,
1153
+ "loss": 0.5637,
1154
+ "step": 191
1155
+ },
1156
+ {
1157
+ "epoch": 0.91,
1158
+ "learning_rate": 1.6530809862481197e-05,
1159
+ "loss": 0.522,
1160
+ "step": 192
1161
+ },
1162
+ {
1163
+ "epoch": 0.91,
1164
+ "learning_rate": 1.6491528323012412e-05,
1165
+ "loss": 0.5521,
1166
+ "step": 193
1167
+ },
1168
+ {
1169
+ "epoch": 0.92,
1170
+ "learning_rate": 1.6452072896049048e-05,
1171
+ "loss": 0.4499,
1172
+ "step": 194
1173
+ },
1174
+ {
1175
+ "epoch": 0.92,
1176
+ "learning_rate": 1.6412444638477094e-05,
1177
+ "loss": 0.5567,
1178
+ "step": 195
1179
+ },
1180
+ {
1181
+ "epoch": 0.93,
1182
+ "learning_rate": 1.637264461181213e-05,
1183
+ "loss": 0.4969,
1184
+ "step": 196
1185
+ },
1186
+ {
1187
+ "epoch": 0.93,
1188
+ "learning_rate": 1.6332673882170882e-05,
1189
+ "loss": 0.5262,
1190
+ "step": 197
1191
+ },
1192
+ {
1193
+ "epoch": 0.94,
1194
+ "learning_rate": 1.6292533520242663e-05,
1195
+ "loss": 0.4856,
1196
+ "step": 198
1197
+ },
1198
+ {
1199
+ "epoch": 0.94,
1200
+ "learning_rate": 1.625222460126071e-05,
1201
+ "loss": 0.531,
1202
+ "step": 199
1203
+ },
1204
+ {
1205
+ "epoch": 0.94,
1206
+ "learning_rate": 1.6211748204973358e-05,
1207
+ "loss": 0.4714,
1208
+ "step": 200
1209
+ },
1210
+ {
1211
+ "epoch": 0.95,
1212
+ "learning_rate": 1.6171105415615132e-05,
1213
+ "loss": 0.5512,
1214
+ "step": 201
1215
+ },
1216
+ {
1217
+ "epoch": 0.95,
1218
+ "learning_rate": 1.613029732187771e-05,
1219
+ "loss": 0.5255,
1220
+ "step": 202
1221
+ },
1222
+ {
1223
+ "epoch": 0.96,
1224
+ "learning_rate": 1.6089325016880737e-05,
1225
+ "loss": 0.5408,
1226
+ "step": 203
1227
+ },
1228
+ {
1229
+ "epoch": 0.96,
1230
+ "learning_rate": 1.6048189598142568e-05,
1231
+ "loss": 0.6029,
1232
+ "step": 204
1233
+ },
1234
+ {
1235
+ "epoch": 0.97,
1236
+ "learning_rate": 1.600689216755085e-05,
1237
+ "loss": 0.5065,
1238
+ "step": 205
1239
+ },
1240
+ {
1241
+ "epoch": 0.97,
1242
+ "learning_rate": 1.596543383133303e-05,
1243
+ "loss": 0.5171,
1244
+ "step": 206
1245
+ },
1246
+ {
1247
+ "epoch": 0.98,
1248
+ "learning_rate": 1.592381570002669e-05,
1249
+ "loss": 0.5527,
1250
+ "step": 207
1251
+ },
1252
+ {
1253
+ "epoch": 0.98,
1254
+ "learning_rate": 1.588203888844982e-05,
1255
+ "loss": 0.5016,
1256
+ "step": 208
1257
+ },
1258
+ {
1259
+ "epoch": 0.99,
1260
+ "learning_rate": 1.5840104515670963e-05,
1261
+ "loss": 0.5576,
1262
+ "step": 209
1263
+ },
1264
+ {
1265
+ "epoch": 0.99,
1266
+ "learning_rate": 1.579801370497922e-05,
1267
+ "loss": 0.533,
1268
+ "step": 210
1269
+ },
1270
+ {
1271
+ "epoch": 1.0,
1272
+ "learning_rate": 1.5755767583854165e-05,
1273
+ "loss": 0.503,
1274
+ "step": 211
1275
+ },
1276
+ {
1277
+ "epoch": 1.0,
1278
+ "learning_rate": 1.5713367283935657e-05,
1279
+ "loss": 0.4778,
1280
+ "step": 212
1281
+ },
1282
+ {
1283
+ "epoch": 1.01,
1284
+ "learning_rate": 1.5670813940993504e-05,
1285
+ "loss": 0.3722,
1286
+ "step": 213
1287
+ },
1288
+ {
1289
+ "epoch": 1.01,
1290
+ "learning_rate": 1.5628108694897064e-05,
1291
+ "loss": 0.3566,
1292
+ "step": 214
1293
+ },
1294
+ {
1295
+ "epoch": 1.02,
1296
+ "learning_rate": 1.5585252689584694e-05,
1297
+ "loss": 0.3356,
1298
+ "step": 215
1299
+ },
1300
+ {
1301
+ "epoch": 1.02,
1302
+ "learning_rate": 1.5542247073033116e-05,
1303
+ "loss": 0.3356,
1304
+ "step": 216
1305
+ },
1306
+ {
1307
+ "epoch": 1.02,
1308
+ "learning_rate": 1.5499092997226658e-05,
1309
+ "loss": 0.3739,
1310
+ "step": 217
1311
+ },
1312
+ {
1313
+ "epoch": 1.03,
1314
+ "learning_rate": 1.5455791618126407e-05,
1315
+ "loss": 0.3322,
1316
+ "step": 218
1317
+ },
1318
+ {
1319
+ "epoch": 1.03,
1320
+ "learning_rate": 1.541234409563923e-05,
1321
+ "loss": 0.3449,
1322
+ "step": 219
1323
+ },
1324
+ {
1325
+ "epoch": 1.04,
1326
+ "learning_rate": 1.536875159358673e-05,
1327
+ "loss": 0.3532,
1328
+ "step": 220
1329
+ },
1330
+ {
1331
+ "epoch": 1.04,
1332
+ "learning_rate": 1.5325015279674037e-05,
1333
+ "loss": 0.347,
1334
+ "step": 221
1335
+ },
1336
+ {
1337
+ "epoch": 1.05,
1338
+ "learning_rate": 1.5281136325458553e-05,
1339
+ "loss": 0.3779,
1340
+ "step": 222
1341
+ },
1342
+ {
1343
+ "epoch": 1.05,
1344
+ "learning_rate": 1.5237115906318565e-05,
1345
+ "loss": 0.319,
1346
+ "step": 223
1347
+ },
1348
+ {
1349
+ "epoch": 1.06,
1350
+ "learning_rate": 1.5192955201421743e-05,
1351
+ "loss": 0.3532,
1352
+ "step": 224
1353
+ },
1354
+ {
1355
+ "epoch": 1.06,
1356
+ "learning_rate": 1.5148655393693588e-05,
1357
+ "loss": 0.3327,
1358
+ "step": 225
1359
+ },
1360
+ {
1361
+ "epoch": 1.07,
1362
+ "learning_rate": 1.5104217669785714e-05,
1363
+ "loss": 0.3584,
1364
+ "step": 226
1365
+ },
1366
+ {
1367
+ "epoch": 1.07,
1368
+ "learning_rate": 1.5059643220044069e-05,
1369
+ "loss": 0.3402,
1370
+ "step": 227
1371
+ },
1372
+ {
1373
+ "epoch": 1.08,
1374
+ "learning_rate": 1.5014933238477069e-05,
1375
+ "loss": 0.3407,
1376
+ "step": 228
1377
+ },
1378
+ {
1379
+ "epoch": 1.08,
1380
+ "learning_rate": 1.4970088922723584e-05,
1381
+ "loss": 0.3311,
1382
+ "step": 229
1383
+ },
1384
+ {
1385
+ "epoch": 1.09,
1386
+ "learning_rate": 1.4925111474020875e-05,
1387
+ "loss": 0.3565,
1388
+ "step": 230
1389
+ },
1390
+ {
1391
+ "epoch": 1.09,
1392
+ "learning_rate": 1.488000209717242e-05,
1393
+ "loss": 0.3542,
1394
+ "step": 231
1395
+ },
1396
+ {
1397
+ "epoch": 1.1,
1398
+ "learning_rate": 1.4834762000515621e-05,
1399
+ "loss": 0.3169,
1400
+ "step": 232
1401
+ },
1402
+ {
1403
+ "epoch": 1.1,
1404
+ "learning_rate": 1.4789392395889468e-05,
1405
+ "loss": 0.3301,
1406
+ "step": 233
1407
+ },
1408
+ {
1409
+ "epoch": 1.11,
1410
+ "learning_rate": 1.4743894498602043e-05,
1411
+ "loss": 0.3263,
1412
+ "step": 234
1413
+ },
1414
+ {
1415
+ "epoch": 1.11,
1416
+ "learning_rate": 1.4698269527397993e-05,
1417
+ "loss": 0.3058,
1418
+ "step": 235
1419
+ },
1420
+ {
1421
+ "epoch": 1.11,
1422
+ "learning_rate": 1.4652518704425862e-05,
1423
+ "loss": 0.3814,
1424
+ "step": 236
1425
+ },
1426
+ {
1427
+ "epoch": 1.12,
1428
+ "learning_rate": 1.4606643255205377e-05,
1429
+ "loss": 0.3334,
1430
+ "step": 237
1431
+ },
1432
+ {
1433
+ "epoch": 1.12,
1434
+ "learning_rate": 1.4560644408594602e-05,
1435
+ "loss": 0.3278,
1436
+ "step": 238
1437
+ },
1438
+ {
1439
+ "epoch": 1.13,
1440
+ "learning_rate": 1.4514523396757025e-05,
1441
+ "loss": 0.341,
1442
+ "step": 239
1443
+ },
1444
+ {
1445
+ "epoch": 1.13,
1446
+ "learning_rate": 1.4468281455128554e-05,
1447
+ "loss": 0.3417,
1448
+ "step": 240
1449
+ },
1450
+ {
1451
+ "epoch": 1.14,
1452
+ "learning_rate": 1.442191982238443e-05,
1453
+ "loss": 0.3869,
1454
+ "step": 241
1455
+ },
1456
+ {
1457
+ "epoch": 1.14,
1458
+ "learning_rate": 1.4375439740406025e-05,
1459
+ "loss": 0.3481,
1460
+ "step": 242
1461
+ },
1462
+ {
1463
+ "epoch": 1.15,
1464
+ "learning_rate": 1.432884245424761e-05,
1465
+ "loss": 0.3048,
1466
+ "step": 243
1467
+ },
1468
+ {
1469
+ "epoch": 1.15,
1470
+ "learning_rate": 1.4282129212102968e-05,
1471
+ "loss": 0.3402,
1472
+ "step": 244
1473
+ },
1474
+ {
1475
+ "epoch": 1.16,
1476
+ "learning_rate": 1.4235301265271993e-05,
1477
+ "loss": 0.3268,
1478
+ "step": 245
1479
+ },
1480
+ {
1481
+ "epoch": 1.16,
1482
+ "learning_rate": 1.4188359868127135e-05,
1483
+ "loss": 0.3362,
1484
+ "step": 246
1485
+ },
1486
+ {
1487
+ "epoch": 1.17,
1488
+ "learning_rate": 1.4141306278079837e-05,
1489
+ "loss": 0.3383,
1490
+ "step": 247
1491
+ },
1492
+ {
1493
+ "epoch": 1.17,
1494
+ "learning_rate": 1.4094141755546816e-05,
1495
+ "loss": 0.331,
1496
+ "step": 248
1497
+ },
1498
+ {
1499
+ "epoch": 1.18,
1500
+ "learning_rate": 1.4046867563916337e-05,
1501
+ "loss": 0.344,
1502
+ "step": 249
1503
+ },
1504
+ {
1505
+ "epoch": 1.18,
1506
+ "learning_rate": 1.3999484969514345e-05,
1507
+ "loss": 0.3301,
1508
+ "step": 250
1509
+ },
1510
+ {
1511
+ "epoch": 1.19,
1512
+ "learning_rate": 1.3951995241570553e-05,
1513
+ "loss": 0.3383,
1514
+ "step": 251
1515
+ },
1516
+ {
1517
+ "epoch": 1.19,
1518
+ "learning_rate": 1.3904399652184437e-05,
1519
+ "loss": 0.3118,
1520
+ "step": 252
1521
+ },
1522
+ {
1523
+ "epoch": 1.19,
1524
+ "learning_rate": 1.3856699476291176e-05,
1525
+ "loss": 0.3563,
1526
+ "step": 253
1527
+ },
1528
+ {
1529
+ "epoch": 1.2,
1530
+ "learning_rate": 1.3808895991627482e-05,
1531
+ "loss": 0.3526,
1532
+ "step": 254
1533
+ },
1534
+ {
1535
+ "epoch": 1.2,
1536
+ "learning_rate": 1.3760990478697389e-05,
1537
+ "loss": 0.3219,
1538
+ "step": 255
1539
+ },
1540
+ {
1541
+ "epoch": 1.21,
1542
+ "learning_rate": 1.371298422073794e-05,
1543
+ "loss": 0.3505,
1544
+ "step": 256
1545
+ },
1546
+ {
1547
+ "epoch": 1.21,
1548
+ "learning_rate": 1.3664878503684817e-05,
1549
+ "loss": 0.3484,
1550
+ "step": 257
1551
+ },
1552
+ {
1553
+ "epoch": 1.22,
1554
+ "learning_rate": 1.3616674616137902e-05,
1555
+ "loss": 0.328,
1556
+ "step": 258
1557
+ },
1558
+ {
1559
+ "epoch": 1.22,
1560
+ "learning_rate": 1.356837384932675e-05,
1561
+ "loss": 0.3702,
1562
+ "step": 259
1563
+ },
1564
+ {
1565
+ "epoch": 1.23,
1566
+ "learning_rate": 1.3519977497076006e-05,
1567
+ "loss": 0.3438,
1568
+ "step": 260
1569
+ },
1570
+ {
1571
+ "epoch": 1.23,
1572
+ "learning_rate": 1.347148685577075e-05,
1573
+ "loss": 0.3294,
1574
+ "step": 261
1575
+ },
1576
+ {
1577
+ "epoch": 1.24,
1578
+ "learning_rate": 1.3422903224321754e-05,
1579
+ "loss": 0.3473,
1580
+ "step": 262
1581
+ },
1582
+ {
1583
+ "epoch": 1.24,
1584
+ "learning_rate": 1.3374227904130724e-05,
1585
+ "loss": 0.3229,
1586
+ "step": 263
1587
+ },
1588
+ {
1589
+ "epoch": 1.25,
1590
+ "learning_rate": 1.3325462199055393e-05,
1591
+ "loss": 0.3592,
1592
+ "step": 264
1593
+ },
1594
+ {
1595
+ "epoch": 1.25,
1596
+ "learning_rate": 1.3276607415374639e-05,
1597
+ "loss": 0.3448,
1598
+ "step": 265
1599
+ },
1600
+ {
1601
+ "epoch": 1.26,
1602
+ "learning_rate": 1.3227664861753455e-05,
1603
+ "loss": 0.3389,
1604
+ "step": 266
1605
+ },
1606
+ {
1607
+ "epoch": 1.26,
1608
+ "learning_rate": 1.3178635849207933e-05,
1609
+ "loss": 0.3418,
1610
+ "step": 267
1611
+ },
1612
+ {
1613
+ "epoch": 1.27,
1614
+ "learning_rate": 1.3129521691070108e-05,
1615
+ "loss": 0.3118,
1616
+ "step": 268
1617
+ },
1618
+ {
1619
+ "epoch": 1.27,
1620
+ "learning_rate": 1.308032370295281e-05,
1621
+ "loss": 0.3169,
1622
+ "step": 269
1623
+ },
1624
+ {
1625
+ "epoch": 1.28,
1626
+ "learning_rate": 1.3031043202714395e-05,
1627
+ "loss": 0.3246,
1628
+ "step": 270
1629
+ },
1630
+ {
1631
+ "epoch": 1.28,
1632
+ "learning_rate": 1.2981681510423471e-05,
1633
+ "loss": 0.333,
1634
+ "step": 271
1635
+ },
1636
+ {
1637
+ "epoch": 1.28,
1638
+ "learning_rate": 1.2932239948323517e-05,
1639
+ "loss": 0.3416,
1640
+ "step": 272
1641
+ },
1642
+ {
1643
+ "epoch": 1.29,
1644
+ "learning_rate": 1.2882719840797473e-05,
1645
+ "loss": 0.3383,
1646
+ "step": 273
1647
+ },
1648
+ {
1649
+ "epoch": 1.29,
1650
+ "learning_rate": 1.2833122514332259e-05,
1651
+ "loss": 0.3266,
1652
+ "step": 274
1653
+ },
1654
+ {
1655
+ "epoch": 1.3,
1656
+ "learning_rate": 1.278344929748325e-05,
1657
+ "loss": 0.338,
1658
+ "step": 275
1659
+ },
1660
+ {
1661
+ "epoch": 1.3,
1662
+ "learning_rate": 1.2733701520838681e-05,
1663
+ "loss": 0.3586,
1664
+ "step": 276
1665
+ },
1666
+ {
1667
+ "epoch": 1.31,
1668
+ "learning_rate": 1.2683880516984016e-05,
1669
+ "loss": 0.3124,
1670
+ "step": 277
1671
+ },
1672
+ {
1673
+ "epoch": 1.31,
1674
+ "learning_rate": 1.2633987620466229e-05,
1675
+ "loss": 0.3601,
1676
+ "step": 278
1677
+ },
1678
+ {
1679
+ "epoch": 1.32,
1680
+ "learning_rate": 1.2584024167758088e-05,
1681
+ "loss": 0.3174,
1682
+ "step": 279
1683
+ },
1684
+ {
1685
+ "epoch": 1.32,
1686
+ "learning_rate": 1.2533991497222324e-05,
1687
+ "loss": 0.3093,
1688
+ "step": 280
1689
+ },
1690
+ {
1691
+ "epoch": 1.33,
1692
+ "learning_rate": 1.2483890949075803e-05,
1693
+ "loss": 0.3547,
1694
+ "step": 281
1695
+ },
1696
+ {
1697
+ "epoch": 1.33,
1698
+ "learning_rate": 1.2433723865353613e-05,
1699
+ "loss": 0.3313,
1700
+ "step": 282
1701
+ },
1702
+ {
1703
+ "epoch": 1.34,
1704
+ "learning_rate": 1.2383491589873122e-05,
1705
+ "loss": 0.3569,
1706
+ "step": 283
1707
+ },
1708
+ {
1709
+ "epoch": 1.34,
1710
+ "learning_rate": 1.2333195468197975e-05,
1711
+ "loss": 0.3043,
1712
+ "step": 284
1713
+ },
1714
+ {
1715
+ "epoch": 1.35,
1716
+ "learning_rate": 1.2282836847602062e-05,
1717
+ "loss": 0.3282,
1718
+ "step": 285
1719
+ },
1720
+ {
1721
+ "epoch": 1.35,
1722
+ "learning_rate": 1.2232417077033415e-05,
1723
+ "loss": 0.334,
1724
+ "step": 286
1725
+ },
1726
+ {
1727
+ "epoch": 1.36,
1728
+ "learning_rate": 1.2181937507078079e-05,
1729
+ "loss": 0.3172,
1730
+ "step": 287
1731
+ },
1732
+ {
1733
+ "epoch": 1.36,
1734
+ "learning_rate": 1.213139948992394e-05,
1735
+ "loss": 0.3322,
1736
+ "step": 288
1737
+ },
1738
+ {
1739
+ "epoch": 1.36,
1740
+ "learning_rate": 1.2080804379324497e-05,
1741
+ "loss": 0.301,
1742
+ "step": 289
1743
+ },
1744
+ {
1745
+ "epoch": 1.37,
1746
+ "learning_rate": 1.2030153530562602e-05,
1747
+ "loss": 0.325,
1748
+ "step": 290
1749
+ },
1750
+ {
1751
+ "epoch": 1.37,
1752
+ "learning_rate": 1.197944830041416e-05,
1753
+ "loss": 0.3254,
1754
+ "step": 291
1755
+ },
1756
+ {
1757
+ "epoch": 1.38,
1758
+ "learning_rate": 1.1928690047111773e-05,
1759
+ "loss": 0.3,
1760
+ "step": 292
1761
+ },
1762
+ {
1763
+ "epoch": 1.38,
1764
+ "learning_rate": 1.187788013030837e-05,
1765
+ "loss": 0.3367,
1766
+ "step": 293
1767
+ },
1768
+ {
1769
+ "epoch": 1.39,
1770
+ "learning_rate": 1.1827019911040778e-05,
1771
+ "loss": 0.3458,
1772
+ "step": 294
1773
+ },
1774
+ {
1775
+ "epoch": 1.39,
1776
+ "learning_rate": 1.177611075169328e-05,
1777
+ "loss": 0.3664,
1778
+ "step": 295
1779
+ },
1780
+ {
1781
+ "epoch": 1.4,
1782
+ "learning_rate": 1.1725154015961089e-05,
1783
+ "loss": 0.3183,
1784
+ "step": 296
1785
+ },
1786
+ {
1787
+ "epoch": 1.4,
1788
+ "learning_rate": 1.1674151068813856e-05,
1789
+ "loss": 0.3339,
1790
+ "step": 297
1791
+ },
1792
+ {
1793
+ "epoch": 1.41,
1794
+ "learning_rate": 1.1623103276459086e-05,
1795
+ "loss": 0.3335,
1796
+ "step": 298
1797
+ },
1798
+ {
1799
+ "epoch": 1.41,
1800
+ "learning_rate": 1.1572012006305537e-05,
1801
+ "loss": 0.3194,
1802
+ "step": 299
1803
+ },
1804
+ {
1805
+ "epoch": 1.42,
1806
+ "learning_rate": 1.1520878626926608e-05,
1807
+ "loss": 0.3252,
1808
+ "step": 300
1809
+ },
1810
+ {
1811
+ "epoch": 1.42,
1812
+ "learning_rate": 1.1469704508023667e-05,
1813
+ "loss": 0.3683,
1814
+ "step": 301
1815
+ },
1816
+ {
1817
+ "epoch": 1.43,
1818
+ "learning_rate": 1.1418491020389363e-05,
1819
+ "loss": 0.3451,
1820
+ "step": 302
1821
+ },
1822
+ {
1823
+ "epoch": 1.43,
1824
+ "learning_rate": 1.1367239535870913e-05,
1825
+ "loss": 0.3611,
1826
+ "step": 303
1827
+ },
1828
+ {
1829
+ "epoch": 1.44,
1830
+ "learning_rate": 1.1315951427333352e-05,
1831
+ "loss": 0.3126,
1832
+ "step": 304
1833
+ },
1834
+ {
1835
+ "epoch": 1.44,
1836
+ "learning_rate": 1.1264628068622747e-05,
1837
+ "loss": 0.3298,
1838
+ "step": 305
1839
+ },
1840
+ {
1841
+ "epoch": 1.45,
1842
+ "learning_rate": 1.1213270834529419e-05,
1843
+ "loss": 0.3112,
1844
+ "step": 306
1845
+ },
1846
+ {
1847
+ "epoch": 1.45,
1848
+ "learning_rate": 1.1161881100751088e-05,
1849
+ "loss": 0.3426,
1850
+ "step": 307
1851
+ },
1852
+ {
1853
+ "epoch": 1.45,
1854
+ "learning_rate": 1.1110460243856051e-05,
1855
+ "loss": 0.3406,
1856
+ "step": 308
1857
+ },
1858
+ {
1859
+ "epoch": 1.46,
1860
+ "learning_rate": 1.1059009641246288e-05,
1861
+ "loss": 0.3537,
1862
+ "step": 309
1863
+ },
1864
+ {
1865
+ "epoch": 1.46,
1866
+ "learning_rate": 1.1007530671120573e-05,
1867
+ "loss": 0.3349,
1868
+ "step": 310
1869
+ },
1870
+ {
1871
+ "epoch": 1.47,
1872
+ "learning_rate": 1.0956024712437559e-05,
1873
+ "loss": 0.3462,
1874
+ "step": 311
1875
+ },
1876
+ {
1877
+ "epoch": 1.47,
1878
+ "learning_rate": 1.0904493144878834e-05,
1879
+ "loss": 0.3757,
1880
+ "step": 312
1881
+ },
1882
+ {
1883
+ "epoch": 1.48,
1884
+ "learning_rate": 1.085293734881197e-05,
1885
+ "loss": 0.3312,
1886
+ "step": 313
1887
+ },
1888
+ {
1889
+ "epoch": 1.48,
1890
+ "learning_rate": 1.0801358705253535e-05,
1891
+ "loss": 0.3428,
1892
+ "step": 314
1893
+ },
1894
+ {
1895
+ "epoch": 1.49,
1896
+ "learning_rate": 1.074975859583212e-05,
1897
+ "loss": 0.328,
1898
+ "step": 315
1899
+ },
1900
+ {
1901
+ "epoch": 1.49,
1902
+ "learning_rate": 1.0698138402751314e-05,
1903
+ "loss": 0.3453,
1904
+ "step": 316
1905
+ },
1906
+ {
1907
+ "epoch": 1.5,
1908
+ "learning_rate": 1.0646499508752684e-05,
1909
+ "loss": 0.3221,
1910
+ "step": 317
1911
+ },
1912
+ {
1913
+ "epoch": 1.5,
1914
+ "learning_rate": 1.0594843297078736e-05,
1915
+ "loss": 0.348,
1916
+ "step": 318
1917
+ },
1918
+ {
1919
+ "epoch": 1.51,
1920
+ "learning_rate": 1.0543171151435859e-05,
1921
+ "loss": 0.3332,
1922
+ "step": 319
1923
+ },
1924
+ {
1925
+ "epoch": 1.51,
1926
+ "learning_rate": 1.0491484455957264e-05,
1927
+ "loss": 0.345,
1928
+ "step": 320
1929
+ },
1930
+ {
1931
+ "epoch": 1.52,
1932
+ "learning_rate": 1.0439784595165909e-05,
1933
+ "loss": 0.3248,
1934
+ "step": 321
1935
+ },
1936
+ {
1937
+ "epoch": 1.52,
1938
+ "learning_rate": 1.0388072953937406e-05,
1939
+ "loss": 0.3232,
1940
+ "step": 322
1941
+ },
1942
+ {
1943
+ "epoch": 1.53,
1944
+ "learning_rate": 1.0336350917462925e-05,
1945
+ "loss": 0.3645,
1946
+ "step": 323
1947
+ },
1948
+ {
1949
+ "epoch": 1.53,
1950
+ "learning_rate": 1.02846198712121e-05,
1951
+ "loss": 0.3487,
1952
+ "step": 324
1953
+ },
1954
+ {
1955
+ "epoch": 1.53,
1956
+ "learning_rate": 1.0232881200895903e-05,
1957
+ "loss": 0.296,
1958
+ "step": 325
1959
+ },
1960
+ {
1961
+ "epoch": 1.54,
1962
+ "learning_rate": 1.0181136292429528e-05,
1963
+ "loss": 0.3625,
1964
+ "step": 326
1965
+ },
1966
+ {
1967
+ "epoch": 1.54,
1968
+ "learning_rate": 1.0129386531895271e-05,
1969
+ "loss": 0.3353,
1970
+ "step": 327
1971
+ },
1972
+ {
1973
+ "epoch": 1.55,
1974
+ "learning_rate": 1.0077633305505402e-05,
1975
+ "loss": 0.3626,
1976
+ "step": 328
1977
+ },
1978
+ {
1979
+ "epoch": 1.55,
1980
+ "learning_rate": 1.0025877999565033e-05,
1981
+ "loss": 0.3327,
1982
+ "step": 329
1983
+ },
1984
+ {
1985
+ "epoch": 1.56,
1986
+ "learning_rate": 9.974122000434972e-06,
1987
+ "loss": 0.3041,
1988
+ "step": 330
1989
+ },
1990
+ {
1991
+ "epoch": 1.56,
1992
+ "learning_rate": 9.922366694494603e-06,
1993
+ "loss": 0.358,
1994
+ "step": 331
1995
+ },
1996
+ {
1997
+ "epoch": 1.57,
1998
+ "learning_rate": 9.87061346810473e-06,
1999
+ "loss": 0.3464,
2000
+ "step": 332
2001
+ },
2002
+ {
2003
+ "epoch": 1.57,
2004
+ "learning_rate": 9.818863707570476e-06,
2005
+ "loss": 0.3411,
2006
+ "step": 333
2007
+ },
2008
+ {
2009
+ "epoch": 1.58,
2010
+ "learning_rate": 9.767118799104099e-06,
2011
+ "loss": 0.31,
2012
+ "step": 334
2013
+ },
2014
+ {
2015
+ "epoch": 1.58,
2016
+ "learning_rate": 9.7153801287879e-06,
2017
+ "loss": 0.3477,
2018
+ "step": 335
2019
+ },
2020
+ {
2021
+ "epoch": 1.59,
2022
+ "learning_rate": 9.663649082537075e-06,
2023
+ "loss": 0.342,
2024
+ "step": 336
2025
+ },
2026
+ {
2027
+ "epoch": 1.59,
2028
+ "learning_rate": 9.611927046062596e-06,
2029
+ "loss": 0.3516,
2030
+ "step": 337
2031
+ },
2032
+ {
2033
+ "epoch": 1.6,
2034
+ "learning_rate": 9.560215404834094e-06,
2035
+ "loss": 0.3493,
2036
+ "step": 338
2037
+ },
2038
+ {
2039
+ "epoch": 1.6,
2040
+ "learning_rate": 9.50851554404274e-06,
2041
+ "loss": 0.2968,
2042
+ "step": 339
2043
+ },
2044
+ {
2045
+ "epoch": 1.61,
2046
+ "learning_rate": 9.456828848564143e-06,
2047
+ "loss": 0.3231,
2048
+ "step": 340
2049
+ },
2050
+ {
2051
+ "epoch": 1.61,
2052
+ "learning_rate": 9.405156702921266e-06,
2053
+ "loss": 0.3272,
2054
+ "step": 341
2055
+ },
2056
+ {
2057
+ "epoch": 1.62,
2058
+ "learning_rate": 9.35350049124732e-06,
2059
+ "loss": 0.3403,
2060
+ "step": 342
2061
+ },
2062
+ {
2063
+ "epoch": 1.62,
2064
+ "learning_rate": 9.30186159724869e-06,
2065
+ "loss": 0.3594,
2066
+ "step": 343
2067
+ },
2068
+ {
2069
+ "epoch": 1.62,
2070
+ "learning_rate": 9.250241404167882e-06,
2071
+ "loss": 0.2982,
2072
+ "step": 344
2073
+ },
2074
+ {
2075
+ "epoch": 1.63,
2076
+ "learning_rate": 9.198641294746467e-06,
2077
+ "loss": 0.3288,
2078
+ "step": 345
2079
+ },
2080
+ {
2081
+ "epoch": 1.63,
2082
+ "learning_rate": 9.147062651188034e-06,
2083
+ "loss": 0.334,
2084
+ "step": 346
2085
+ },
2086
+ {
2087
+ "epoch": 1.64,
2088
+ "learning_rate": 9.095506855121168e-06,
2089
+ "loss": 0.3124,
2090
+ "step": 347
2091
+ },
2092
+ {
2093
+ "epoch": 1.64,
2094
+ "learning_rate": 9.043975287562443e-06,
2095
+ "loss": 0.3359,
2096
+ "step": 348
2097
+ },
2098
+ {
2099
+ "epoch": 1.65,
2100
+ "learning_rate": 8.992469328879428e-06,
2101
+ "loss": 0.3184,
2102
+ "step": 349
2103
+ },
2104
+ {
2105
+ "epoch": 1.65,
2106
+ "learning_rate": 8.940990358753716e-06,
2107
+ "loss": 0.3314,
2108
+ "step": 350
2109
+ },
2110
+ {
2111
+ "epoch": 1.66,
2112
+ "learning_rate": 8.889539756143954e-06,
2113
+ "loss": 0.3295,
2114
+ "step": 351
2115
+ },
2116
+ {
2117
+ "epoch": 1.66,
2118
+ "learning_rate": 8.838118899248914e-06,
2119
+ "loss": 0.3236,
2120
+ "step": 352
2121
+ },
2122
+ {
2123
+ "epoch": 1.67,
2124
+ "learning_rate": 8.786729165470584e-06,
2125
+ "loss": 0.3356,
2126
+ "step": 353
2127
+ },
2128
+ {
2129
+ "epoch": 1.67,
2130
+ "learning_rate": 8.735371931377254e-06,
2131
+ "loss": 0.3234,
2132
+ "step": 354
2133
+ },
2134
+ {
2135
+ "epoch": 1.68,
2136
+ "learning_rate": 8.684048572666653e-06,
2137
+ "loss": 0.32,
2138
+ "step": 355
2139
+ },
2140
+ {
2141
+ "epoch": 1.68,
2142
+ "learning_rate": 8.632760464129086e-06,
2143
+ "loss": 0.3297,
2144
+ "step": 356
2145
+ },
2146
+ {
2147
+ "epoch": 1.69,
2148
+ "learning_rate": 8.581508979610638e-06,
2149
+ "loss": 0.3345,
2150
+ "step": 357
2151
+ },
2152
+ {
2153
+ "epoch": 1.69,
2154
+ "learning_rate": 8.530295491976338e-06,
2155
+ "loss": 0.337,
2156
+ "step": 358
2157
+ },
2158
+ {
2159
+ "epoch": 1.7,
2160
+ "learning_rate": 8.479121373073396e-06,
2161
+ "loss": 0.3301,
2162
+ "step": 359
2163
+ },
2164
+ {
2165
+ "epoch": 1.7,
2166
+ "learning_rate": 8.427987993694465e-06,
2167
+ "loss": 0.3073,
2168
+ "step": 360
2169
+ },
2170
+ {
2171
+ "epoch": 1.7,
2172
+ "learning_rate": 8.376896723540916e-06,
2173
+ "loss": 0.3528,
2174
+ "step": 361
2175
+ },
2176
+ {
2177
+ "epoch": 1.71,
2178
+ "learning_rate": 8.325848931186145e-06,
2179
+ "loss": 0.2995,
2180
+ "step": 362
2181
+ },
2182
+ {
2183
+ "epoch": 1.71,
2184
+ "learning_rate": 8.274845984038916e-06,
2185
+ "loss": 0.3488,
2186
+ "step": 363
2187
+ },
2188
+ {
2189
+ "epoch": 1.72,
2190
+ "learning_rate": 8.223889248306725e-06,
2191
+ "loss": 0.3021,
2192
+ "step": 364
2193
+ },
2194
+ {
2195
+ "epoch": 1.72,
2196
+ "learning_rate": 8.172980088959223e-06,
2197
+ "loss": 0.3565,
2198
+ "step": 365
2199
+ },
2200
+ {
2201
+ "epoch": 1.73,
2202
+ "learning_rate": 8.122119869691636e-06,
2203
+ "loss": 0.3096,
2204
+ "step": 366
2205
+ },
2206
+ {
2207
+ "epoch": 1.73,
2208
+ "learning_rate": 8.07130995288823e-06,
2209
+ "loss": 0.333,
2210
+ "step": 367
2211
+ },
2212
+ {
2213
+ "epoch": 1.74,
2214
+ "learning_rate": 8.020551699585843e-06,
2215
+ "loss": 0.3289,
2216
+ "step": 368
2217
+ },
2218
+ {
2219
+ "epoch": 1.74,
2220
+ "learning_rate": 7.9698464694374e-06,
2221
+ "loss": 0.3299,
2222
+ "step": 369
2223
+ },
2224
+ {
2225
+ "epoch": 1.75,
2226
+ "learning_rate": 7.919195620675505e-06,
2227
+ "loss": 0.3376,
2228
+ "step": 370
2229
+ },
2230
+ {
2231
+ "epoch": 1.75,
2232
+ "learning_rate": 7.868600510076061e-06,
2233
+ "loss": 0.3158,
2234
+ "step": 371
2235
+ },
2236
+ {
2237
+ "epoch": 1.76,
2238
+ "learning_rate": 7.818062492921925e-06,
2239
+ "loss": 0.3195,
2240
+ "step": 372
2241
+ },
2242
+ {
2243
+ "epoch": 1.76,
2244
+ "learning_rate": 7.76758292296659e-06,
2245
+ "loss": 0.3155,
2246
+ "step": 373
2247
+ },
2248
+ {
2249
+ "epoch": 1.77,
2250
+ "learning_rate": 7.717163152397943e-06,
2251
+ "loss": 0.3116,
2252
+ "step": 374
2253
+ },
2254
+ {
2255
+ "epoch": 1.77,
2256
+ "learning_rate": 7.666804531802026e-06,
2257
+ "loss": 0.3198,
2258
+ "step": 375
2259
+ },
2260
+ {
2261
+ "epoch": 1.78,
2262
+ "learning_rate": 7.616508410126882e-06,
2263
+ "loss": 0.3457,
2264
+ "step": 376
2265
+ },
2266
+ {
2267
+ "epoch": 1.78,
2268
+ "learning_rate": 7.566276134646391e-06,
2269
+ "loss": 0.2974,
2270
+ "step": 377
2271
+ },
2272
+ {
2273
+ "epoch": 1.79,
2274
+ "learning_rate": 7.5161090509242005e-06,
2275
+ "loss": 0.3512,
2276
+ "step": 378
2277
+ },
2278
+ {
2279
+ "epoch": 1.79,
2280
+ "learning_rate": 7.466008502777679e-06,
2281
+ "loss": 0.3629,
2282
+ "step": 379
2283
+ },
2284
+ {
2285
+ "epoch": 1.79,
2286
+ "learning_rate": 7.415975832241915e-06,
2287
+ "loss": 0.369,
2288
+ "step": 380
2289
+ },
2290
+ {
2291
+ "epoch": 1.8,
2292
+ "learning_rate": 7.3660123795337735e-06,
2293
+ "loss": 0.3278,
2294
+ "step": 381
2295
+ },
2296
+ {
2297
+ "epoch": 1.8,
2298
+ "learning_rate": 7.316119483015988e-06,
2299
+ "loss": 0.3314,
2300
+ "step": 382
2301
+ },
2302
+ {
2303
+ "epoch": 1.81,
2304
+ "learning_rate": 7.2662984791613186e-06,
2305
+ "loss": 0.3352,
2306
+ "step": 383
2307
+ },
2308
+ {
2309
+ "epoch": 1.81,
2310
+ "learning_rate": 7.2165507025167525e-06,
2311
+ "loss": 0.3513,
2312
+ "step": 384
2313
+ },
2314
+ {
2315
+ "epoch": 1.82,
2316
+ "learning_rate": 7.166877485667745e-06,
2317
+ "loss": 0.3309,
2318
+ "step": 385
2319
+ },
2320
+ {
2321
+ "epoch": 1.82,
2322
+ "learning_rate": 7.117280159202531e-06,
2323
+ "loss": 0.3098,
2324
+ "step": 386
2325
+ },
2326
+ {
2327
+ "epoch": 1.83,
2328
+ "learning_rate": 7.067760051676482e-06,
2329
+ "loss": 0.3068,
2330
+ "step": 387
2331
+ },
2332
+ {
2333
+ "epoch": 1.83,
2334
+ "learning_rate": 7.01831848957653e-06,
2335
+ "loss": 0.3321,
2336
+ "step": 388
2337
+ },
2338
+ {
2339
+ "epoch": 1.84,
2340
+ "learning_rate": 6.968956797285607e-06,
2341
+ "loss": 0.3179,
2342
+ "step": 389
2343
+ },
2344
+ {
2345
+ "epoch": 1.84,
2346
+ "learning_rate": 6.919676297047196e-06,
2347
+ "loss": 0.3406,
2348
+ "step": 390
2349
+ },
2350
+ {
2351
+ "epoch": 1.85,
2352
+ "learning_rate": 6.870478308929894e-06,
2353
+ "loss": 0.3399,
2354
+ "step": 391
2355
+ },
2356
+ {
2357
+ "epoch": 1.85,
2358
+ "learning_rate": 6.821364150792072e-06,
2359
+ "loss": 0.3322,
2360
+ "step": 392
2361
+ },
2362
+ {
2363
+ "epoch": 1.86,
2364
+ "learning_rate": 6.772335138246548e-06,
2365
+ "loss": 0.3496,
2366
+ "step": 393
2367
+ },
2368
+ {
2369
+ "epoch": 1.86,
2370
+ "learning_rate": 6.723392584625368e-06,
2371
+ "loss": 0.2918,
2372
+ "step": 394
2373
+ },
2374
+ {
2375
+ "epoch": 1.87,
2376
+ "learning_rate": 6.674537800944607e-06,
2377
+ "loss": 0.3013,
2378
+ "step": 395
2379
+ },
2380
+ {
2381
+ "epoch": 1.87,
2382
+ "learning_rate": 6.625772095869278e-06,
2383
+ "loss": 0.3326,
2384
+ "step": 396
2385
+ },
2386
+ {
2387
+ "epoch": 1.87,
2388
+ "learning_rate": 6.577096775678246e-06,
2389
+ "loss": 0.3112,
2390
+ "step": 397
2391
+ },
2392
+ {
2393
+ "epoch": 1.88,
2394
+ "learning_rate": 6.528513144229256e-06,
2395
+ "loss": 0.3481,
2396
+ "step": 398
2397
+ },
2398
+ {
2399
+ "epoch": 1.88,
2400
+ "learning_rate": 6.480022502923995e-06,
2401
+ "loss": 0.3222,
2402
+ "step": 399
2403
+ },
2404
+ {
2405
+ "epoch": 1.89,
2406
+ "learning_rate": 6.431626150673251e-06,
2407
+ "loss": 0.3336,
2408
+ "step": 400
2409
+ },
2410
+ {
2411
+ "epoch": 1.89,
2412
+ "learning_rate": 6.383325383862102e-06,
2413
+ "loss": 0.3389,
2414
+ "step": 401
2415
+ },
2416
+ {
2417
+ "epoch": 1.9,
2418
+ "learning_rate": 6.3351214963151875e-06,
2419
+ "loss": 0.3341,
2420
+ "step": 402
2421
+ },
2422
+ {
2423
+ "epoch": 1.9,
2424
+ "learning_rate": 6.287015779262064e-06,
2425
+ "loss": 0.3464,
2426
+ "step": 403
2427
+ },
2428
+ {
2429
+ "epoch": 1.91,
2430
+ "learning_rate": 6.239009521302614e-06,
2431
+ "loss": 0.3185,
2432
+ "step": 404
2433
+ },
2434
+ {
2435
+ "epoch": 1.91,
2436
+ "learning_rate": 6.191104008372522e-06,
2437
+ "loss": 0.3384,
2438
+ "step": 405
2439
+ },
2440
+ {
2441
+ "epoch": 1.92,
2442
+ "learning_rate": 6.143300523708828e-06,
2443
+ "loss": 0.3039,
2444
+ "step": 406
2445
+ },
2446
+ {
2447
+ "epoch": 1.92,
2448
+ "learning_rate": 6.095600347815564e-06,
2449
+ "loss": 0.2959,
2450
+ "step": 407
2451
+ },
2452
+ {
2453
+ "epoch": 1.93,
2454
+ "learning_rate": 6.048004758429451e-06,
2455
+ "loss": 0.3292,
2456
+ "step": 408
2457
+ },
2458
+ {
2459
+ "epoch": 1.93,
2460
+ "learning_rate": 6.0005150304856574e-06,
2461
+ "loss": 0.3343,
2462
+ "step": 409
2463
+ },
2464
+ {
2465
+ "epoch": 1.94,
2466
+ "learning_rate": 5.953132436083666e-06,
2467
+ "loss": 0.3392,
2468
+ "step": 410
2469
+ },
2470
+ {
2471
+ "epoch": 1.94,
2472
+ "learning_rate": 5.905858244453184e-06,
2473
+ "loss": 0.3319,
2474
+ "step": 411
2475
+ },
2476
+ {
2477
+ "epoch": 1.95,
2478
+ "learning_rate": 5.8586937219201665e-06,
2479
+ "loss": 0.3332,
2480
+ "step": 412
2481
+ },
2482
+ {
2483
+ "epoch": 1.95,
2484
+ "learning_rate": 5.811640131872867e-06,
2485
+ "loss": 0.3663,
2486
+ "step": 413
2487
+ },
2488
+ {
2489
+ "epoch": 1.96,
2490
+ "learning_rate": 5.76469873472801e-06,
2491
+ "loss": 0.3352,
2492
+ "step": 414
2493
+ },
2494
+ {
2495
+ "epoch": 1.96,
2496
+ "learning_rate": 5.717870787897028e-06,
2497
+ "loss": 0.3426,
2498
+ "step": 415
2499
+ },
2500
+ {
2501
+ "epoch": 1.96,
2502
+ "learning_rate": 5.67115754575239e-06,
2503
+ "loss": 0.343,
2504
+ "step": 416
2505
+ },
2506
+ {
2507
+ "epoch": 1.97,
2508
+ "learning_rate": 5.624560259593976e-06,
2509
+ "loss": 0.313,
2510
+ "step": 417
2511
+ },
2512
+ {
2513
+ "epoch": 1.97,
2514
+ "learning_rate": 5.578080177615575e-06,
2515
+ "loss": 0.3561,
2516
+ "step": 418
2517
+ },
2518
+ {
2519
+ "epoch": 1.98,
2520
+ "learning_rate": 5.531718544871448e-06,
2521
+ "loss": 0.335,
2522
+ "step": 419
2523
+ },
2524
+ {
2525
+ "epoch": 1.98,
2526
+ "learning_rate": 5.485476603242979e-06,
2527
+ "loss": 0.3531,
2528
+ "step": 420
2529
+ },
2530
+ {
2531
+ "epoch": 1.99,
2532
+ "learning_rate": 5.439355591405403e-06,
2533
+ "loss": 0.3141,
2534
+ "step": 421
2535
+ },
2536
+ {
2537
+ "epoch": 1.99,
2538
+ "learning_rate": 5.393356744794629e-06,
2539
+ "loss": 0.2924,
2540
+ "step": 422
2541
+ },
2542
+ {
2543
+ "epoch": 2.0,
2544
+ "learning_rate": 5.347481295574141e-06,
2545
+ "loss": 0.3326,
2546
+ "step": 423
2547
+ },
2548
+ {
2549
+ "epoch": 2.0,
2550
+ "learning_rate": 5.3017304726020126e-06,
2551
+ "loss": 0.2575,
2552
+ "step": 424
2553
+ },
2554
+ {
2555
+ "epoch": 2.01,
2556
+ "learning_rate": 5.256105501397961e-06,
2557
+ "loss": 0.2195,
2558
+ "step": 425
2559
+ },
2560
+ {
2561
+ "epoch": 2.01,
2562
+ "learning_rate": 5.210607604110537e-06,
2563
+ "loss": 0.2026,
2564
+ "step": 426
2565
+ },
2566
+ {
2567
+ "epoch": 2.02,
2568
+ "learning_rate": 5.165237999484378e-06,
2569
+ "loss": 0.1907,
2570
+ "step": 427
2571
+ },
2572
+ {
2573
+ "epoch": 2.02,
2574
+ "learning_rate": 5.119997902827584e-06,
2575
+ "loss": 0.2075,
2576
+ "step": 428
2577
+ },
2578
+ {
2579
+ "epoch": 2.03,
2580
+ "learning_rate": 5.074888525979128e-06,
2581
+ "loss": 0.2137,
2582
+ "step": 429
2583
+ },
2584
+ {
2585
+ "epoch": 2.03,
2586
+ "learning_rate": 5.029911077276422e-06,
2587
+ "loss": 0.1949,
2588
+ "step": 430
2589
+ },
2590
+ {
2591
+ "epoch": 2.04,
2592
+ "learning_rate": 4.985066761522932e-06,
2593
+ "loss": 0.1534,
2594
+ "step": 431
2595
+ },
2596
+ {
2597
+ "epoch": 2.04,
2598
+ "learning_rate": 4.940356779955933e-06,
2599
+ "loss": 0.1946,
2600
+ "step": 432
2601
+ },
2602
+ {
2603
+ "epoch": 2.04,
2604
+ "learning_rate": 4.8957823302142916e-06,
2605
+ "loss": 0.1682,
2606
+ "step": 433
2607
+ },
2608
+ {
2609
+ "epoch": 2.05,
2610
+ "learning_rate": 4.851344606306413e-06,
2611
+ "loss": 0.1998,
2612
+ "step": 434
2613
+ },
2614
+ {
2615
+ "epoch": 2.05,
2616
+ "learning_rate": 4.8070447985782575e-06,
2617
+ "loss": 0.1824,
2618
+ "step": 435
2619
+ },
2620
+ {
2621
+ "epoch": 2.06,
2622
+ "learning_rate": 4.762884093681439e-06,
2623
+ "loss": 0.1903,
2624
+ "step": 436
2625
+ },
2626
+ {
2627
+ "epoch": 2.06,
2628
+ "learning_rate": 4.718863674541449e-06,
2629
+ "loss": 0.1957,
2630
+ "step": 437
2631
+ },
2632
+ {
2633
+ "epoch": 2.07,
2634
+ "learning_rate": 4.674984720325961e-06,
2635
+ "loss": 0.1954,
2636
+ "step": 438
2637
+ },
2638
+ {
2639
+ "epoch": 2.07,
2640
+ "learning_rate": 4.63124840641327e-06,
2641
+ "loss": 0.2178,
2642
+ "step": 439
2643
+ },
2644
+ {
2645
+ "epoch": 2.08,
2646
+ "learning_rate": 4.587655904360769e-06,
2647
+ "loss": 0.2002,
2648
+ "step": 440
2649
+ },
2650
+ {
2651
+ "epoch": 2.08,
2652
+ "learning_rate": 4.544208381873597e-06,
2653
+ "loss": 0.1907,
2654
+ "step": 441
2655
+ },
2656
+ {
2657
+ "epoch": 2.09,
2658
+ "learning_rate": 4.500907002773345e-06,
2659
+ "loss": 0.1878,
2660
+ "step": 442
2661
+ },
2662
+ {
2663
+ "epoch": 2.09,
2664
+ "learning_rate": 4.457752926966888e-06,
2665
+ "loss": 0.1768,
2666
+ "step": 443
2667
+ },
2668
+ {
2669
+ "epoch": 2.1,
2670
+ "learning_rate": 4.414747310415308e-06,
2671
+ "loss": 0.184,
2672
+ "step": 444
2673
+ },
2674
+ {
2675
+ "epoch": 2.1,
2676
+ "learning_rate": 4.37189130510294e-06,
2677
+ "loss": 0.1842,
2678
+ "step": 445
2679
+ },
2680
+ {
2681
+ "epoch": 2.11,
2682
+ "learning_rate": 4.329186059006498e-06,
2683
+ "loss": 0.1932,
2684
+ "step": 446
2685
+ },
2686
+ {
2687
+ "epoch": 2.11,
2688
+ "learning_rate": 4.2866327160643485e-06,
2689
+ "loss": 0.1747,
2690
+ "step": 447
2691
+ },
2692
+ {
2693
+ "epoch": 2.12,
2694
+ "learning_rate": 4.244232416145839e-06,
2695
+ "loss": 0.1876,
2696
+ "step": 448
2697
+ },
2698
+ {
2699
+ "epoch": 2.12,
2700
+ "learning_rate": 4.201986295020786e-06,
2701
+ "loss": 0.1661,
2702
+ "step": 449
2703
+ },
2704
+ {
2705
+ "epoch": 2.13,
2706
+ "learning_rate": 4.159895484329039e-06,
2707
+ "loss": 0.1831,
2708
+ "step": 450
2709
+ },
2710
+ {
2711
+ "epoch": 2.13,
2712
+ "learning_rate": 4.117961111550183e-06,
2713
+ "loss": 0.1571,
2714
+ "step": 451
2715
+ },
2716
+ {
2717
+ "epoch": 2.13,
2718
+ "learning_rate": 4.076184299973316e-06,
2719
+ "loss": 0.2028,
2720
+ "step": 452
2721
+ },
2722
+ {
2723
+ "epoch": 2.14,
2724
+ "learning_rate": 4.0345661686669745e-06,
2725
+ "loss": 0.1949,
2726
+ "step": 453
2727
+ },
2728
+ {
2729
+ "epoch": 2.14,
2730
+ "learning_rate": 3.993107832449149e-06,
2731
+ "loss": 0.1925,
2732
+ "step": 454
2733
+ },
2734
+ {
2735
+ "epoch": 2.15,
2736
+ "learning_rate": 3.9518104018574345e-06,
2737
+ "loss": 0.178,
2738
+ "step": 455
2739
+ },
2740
+ {
2741
+ "epoch": 2.15,
2742
+ "learning_rate": 3.910674983119266e-06,
2743
+ "loss": 0.1696,
2744
+ "step": 456
2745
+ },
2746
+ {
2747
+ "epoch": 2.16,
2748
+ "learning_rate": 3.869702678122293e-06,
2749
+ "loss": 0.1973,
2750
+ "step": 457
2751
+ },
2752
+ {
2753
+ "epoch": 2.16,
2754
+ "learning_rate": 3.828894584384867e-06,
2755
+ "loss": 0.156,
2756
+ "step": 458
2757
+ },
2758
+ {
2759
+ "epoch": 2.17,
2760
+ "learning_rate": 3.788251795026645e-06,
2761
+ "loss": 0.1759,
2762
+ "step": 459
2763
+ },
2764
+ {
2765
+ "epoch": 2.17,
2766
+ "learning_rate": 3.7477753987392927e-06,
2767
+ "loss": 0.1725,
2768
+ "step": 460
2769
+ },
2770
+ {
2771
+ "epoch": 2.18,
2772
+ "learning_rate": 3.707466479757338e-06,
2773
+ "loss": 0.1786,
2774
+ "step": 461
2775
+ },
2776
+ {
2777
+ "epoch": 2.18,
2778
+ "learning_rate": 3.667326117829119e-06,
2779
+ "loss": 0.1827,
2780
+ "step": 462
2781
+ },
2782
+ {
2783
+ "epoch": 2.19,
2784
+ "learning_rate": 3.62735538818787e-06,
2785
+ "loss": 0.1666,
2786
+ "step": 463
2787
+ },
2788
+ {
2789
+ "epoch": 2.19,
2790
+ "learning_rate": 3.5875553615229064e-06,
2791
+ "loss": 0.1841,
2792
+ "step": 464
2793
+ },
2794
+ {
2795
+ "epoch": 2.2,
2796
+ "learning_rate": 3.5479271039509555e-06,
2797
+ "loss": 0.1742,
2798
+ "step": 465
2799
+ },
2800
+ {
2801
+ "epoch": 2.2,
2802
+ "learning_rate": 3.5084716769875906e-06,
2803
+ "loss": 0.1878,
2804
+ "step": 466
2805
+ },
2806
+ {
2807
+ "epoch": 2.21,
2808
+ "learning_rate": 3.469190137518804e-06,
2809
+ "loss": 0.1991,
2810
+ "step": 467
2811
+ },
2812
+ {
2813
+ "epoch": 2.21,
2814
+ "learning_rate": 3.4300835377726904e-06,
2815
+ "loss": 0.1661,
2816
+ "step": 468
2817
+ },
2818
+ {
2819
+ "epoch": 2.21,
2820
+ "learning_rate": 3.3911529252912633e-06,
2821
+ "loss": 0.1845,
2822
+ "step": 469
2823
+ },
2824
+ {
2825
+ "epoch": 2.22,
2826
+ "learning_rate": 3.3523993429023914e-06,
2827
+ "loss": 0.1917,
2828
+ "step": 470
2829
+ },
2830
+ {
2831
+ "epoch": 2.22,
2832
+ "learning_rate": 3.3138238286918777e-06,
2833
+ "loss": 0.1871,
2834
+ "step": 471
2835
+ },
2836
+ {
2837
+ "epoch": 2.23,
2838
+ "learning_rate": 3.2754274159756316e-06,
2839
+ "loss": 0.167,
2840
+ "step": 472
2841
+ },
2842
+ {
2843
+ "epoch": 2.23,
2844
+ "learning_rate": 3.2372111332720045e-06,
2845
+ "loss": 0.1978,
2846
+ "step": 473
2847
+ },
2848
+ {
2849
+ "epoch": 2.24,
2850
+ "learning_rate": 3.1991760042742316e-06,
2851
+ "loss": 0.1784,
2852
+ "step": 474
2853
+ },
2854
+ {
2855
+ "epoch": 2.24,
2856
+ "learning_rate": 3.1613230478230238e-06,
2857
+ "loss": 0.1718,
2858
+ "step": 475
2859
+ },
2860
+ {
2861
+ "epoch": 2.25,
2862
+ "learning_rate": 3.1236532778792563e-06,
2863
+ "loss": 0.1805,
2864
+ "step": 476
2865
+ },
2866
+ {
2867
+ "epoch": 2.25,
2868
+ "learning_rate": 3.086167703496821e-06,
2869
+ "loss": 0.1995,
2870
+ "step": 477
2871
+ },
2872
+ {
2873
+ "epoch": 2.26,
2874
+ "learning_rate": 3.048867328795588e-06,
2875
+ "loss": 0.1641,
2876
+ "step": 478
2877
+ },
2878
+ {
2879
+ "epoch": 2.26,
2880
+ "learning_rate": 3.011753152934529e-06,
2881
+ "loss": 0.2065,
2882
+ "step": 479
2883
+ },
2884
+ {
2885
+ "epoch": 2.27,
2886
+ "learning_rate": 2.9748261700849245e-06,
2887
+ "loss": 0.1805,
2888
+ "step": 480
2889
+ },
2890
+ {
2891
+ "epoch": 2.27,
2892
+ "learning_rate": 2.9380873694037515e-06,
2893
+ "loss": 0.1814,
2894
+ "step": 481
2895
+ },
2896
+ {
2897
+ "epoch": 2.28,
2898
+ "learning_rate": 2.9015377350071785e-06,
2899
+ "loss": 0.1965,
2900
+ "step": 482
2901
+ },
2902
+ {
2903
+ "epoch": 2.28,
2904
+ "learning_rate": 2.865178245944218e-06,
2905
+ "loss": 0.1832,
2906
+ "step": 483
2907
+ },
2908
+ {
2909
+ "epoch": 2.29,
2910
+ "learning_rate": 2.829009876170481e-06,
2911
+ "loss": 0.2169,
2912
+ "step": 484
2913
+ },
2914
+ {
2915
+ "epoch": 2.29,
2916
+ "learning_rate": 2.793033594522102e-06,
2917
+ "loss": 0.1803,
2918
+ "step": 485
2919
+ },
2920
+ {
2921
+ "epoch": 2.3,
2922
+ "learning_rate": 2.757250364689782e-06,
2923
+ "loss": 0.1811,
2924
+ "step": 486
2925
+ },
2926
+ {
2927
+ "epoch": 2.3,
2928
+ "learning_rate": 2.7216611451929754e-06,
2929
+ "loss": 0.1507,
2930
+ "step": 487
2931
+ },
2932
+ {
2933
+ "epoch": 2.3,
2934
+ "learning_rate": 2.686266889354211e-06,
2935
+ "loss": 0.1811,
2936
+ "step": 488
2937
+ },
2938
+ {
2939
+ "epoch": 2.31,
2940
+ "learning_rate": 2.6510685452735608e-06,
2941
+ "loss": 0.1673,
2942
+ "step": 489
2943
+ },
2944
+ {
2945
+ "epoch": 2.31,
2946
+ "learning_rate": 2.6160670558032454e-06,
2947
+ "loss": 0.1998,
2948
+ "step": 490
2949
+ },
2950
+ {
2951
+ "epoch": 2.32,
2952
+ "learning_rate": 2.5812633585223657e-06,
2953
+ "loss": 0.1791,
2954
+ "step": 491
2955
+ },
2956
+ {
2957
+ "epoch": 2.32,
2958
+ "learning_rate": 2.546658385711801e-06,
2959
+ "loss": 0.1756,
2960
+ "step": 492
2961
+ },
2962
+ {
2963
+ "epoch": 2.33,
2964
+ "learning_rate": 2.5122530643292274e-06,
2965
+ "loss": 0.1733,
2966
+ "step": 493
2967
+ },
2968
+ {
2969
+ "epoch": 2.33,
2970
+ "learning_rate": 2.478048315984293e-06,
2971
+ "loss": 0.1653,
2972
+ "step": 494
2973
+ },
2974
+ {
2975
+ "epoch": 2.34,
2976
+ "learning_rate": 2.444045056913932e-06,
2977
+ "loss": 0.1682,
2978
+ "step": 495
2979
+ },
2980
+ {
2981
+ "epoch": 2.34,
2982
+ "learning_rate": 2.410244197957815e-06,
2983
+ "loss": 0.1801,
2984
+ "step": 496
2985
+ },
2986
+ {
2987
+ "epoch": 2.35,
2988
+ "learning_rate": 2.3766466445339565e-06,
2989
+ "loss": 0.1858,
2990
+ "step": 497
2991
+ },
2992
+ {
2993
+ "epoch": 2.35,
2994
+ "learning_rate": 2.3432532966144526e-06,
2995
+ "loss": 0.1903,
2996
+ "step": 498
2997
+ },
2998
+ {
2999
+ "epoch": 2.36,
3000
+ "learning_rate": 2.3100650487013953e-06,
3001
+ "loss": 0.1836,
3002
+ "step": 499
3003
+ },
3004
+ {
3005
+ "epoch": 2.36,
3006
+ "learning_rate": 2.2770827898028825e-06,
3007
+ "loss": 0.1884,
3008
+ "step": 500
3009
+ },
3010
+ {
3011
+ "epoch": 2.37,
3012
+ "learning_rate": 2.2443074034092204e-06,
3013
+ "loss": 0.1955,
3014
+ "step": 501
3015
+ },
3016
+ {
3017
+ "epoch": 2.37,
3018
+ "learning_rate": 2.2117397674692654e-06,
3019
+ "loss": 0.1802,
3020
+ "step": 502
3021
+ },
3022
+ {
3023
+ "epoch": 2.38,
3024
+ "learning_rate": 2.1793807543668857e-06,
3025
+ "loss": 0.1703,
3026
+ "step": 503
3027
+ },
3028
+ {
3029
+ "epoch": 2.38,
3030
+ "learning_rate": 2.1472312308976105e-06,
3031
+ "loss": 0.184,
3032
+ "step": 504
3033
+ },
3034
+ {
3035
+ "epoch": 2.38,
3036
+ "learning_rate": 2.1152920582453995e-06,
3037
+ "loss": 0.1711,
3038
+ "step": 505
3039
+ },
3040
+ {
3041
+ "epoch": 2.39,
3042
+ "learning_rate": 2.0835640919595877e-06,
3043
+ "loss": 0.1861,
3044
+ "step": 506
3045
+ },
3046
+ {
3047
+ "epoch": 2.39,
3048
+ "learning_rate": 2.052048181931955e-06,
3049
+ "loss": 0.1663,
3050
+ "step": 507
3051
+ },
3052
+ {
3053
+ "epoch": 2.4,
3054
+ "learning_rate": 2.0207451723739633e-06,
3055
+ "loss": 0.1841,
3056
+ "step": 508
3057
+ },
3058
+ {
3059
+ "epoch": 2.4,
3060
+ "learning_rate": 1.9896559017941508e-06,
3061
+ "loss": 0.1764,
3062
+ "step": 509
3063
+ },
3064
+ {
3065
+ "epoch": 2.41,
3066
+ "learning_rate": 1.9587812029756612e-06,
3067
+ "loss": 0.1668,
3068
+ "step": 510
3069
+ },
3070
+ {
3071
+ "epoch": 2.41,
3072
+ "learning_rate": 1.928121902953939e-06,
3073
+ "loss": 0.1911,
3074
+ "step": 511
3075
+ },
3076
+ {
3077
+ "epoch": 2.42,
3078
+ "learning_rate": 1.8976788229945796e-06,
3079
+ "loss": 0.191,
3080
+ "step": 512
3081
+ },
3082
+ {
3083
+ "epoch": 2.42,
3084
+ "learning_rate": 1.8674527785713247e-06,
3085
+ "loss": 0.1869,
3086
+ "step": 513
3087
+ },
3088
+ {
3089
+ "epoch": 2.43,
3090
+ "learning_rate": 1.8374445793442264e-06,
3091
+ "loss": 0.1982,
3092
+ "step": 514
3093
+ },
3094
+ {
3095
+ "epoch": 2.43,
3096
+ "learning_rate": 1.8076550291379479e-06,
3097
+ "loss": 0.1654,
3098
+ "step": 515
3099
+ },
3100
+ {
3101
+ "epoch": 2.44,
3102
+ "learning_rate": 1.7780849259202393e-06,
3103
+ "loss": 0.1685,
3104
+ "step": 516
3105
+ },
3106
+ {
3107
+ "epoch": 2.44,
3108
+ "learning_rate": 1.7487350617805577e-06,
3109
+ "loss": 0.1812,
3110
+ "step": 517
3111
+ },
3112
+ {
3113
+ "epoch": 2.45,
3114
+ "learning_rate": 1.7196062229088606e-06,
3115
+ "loss": 0.1691,
3116
+ "step": 518
3117
+ },
3118
+ {
3119
+ "epoch": 2.45,
3120
+ "learning_rate": 1.6906991895745284e-06,
3121
+ "loss": 0.1777,
3122
+ "step": 519
3123
+ },
3124
+ {
3125
+ "epoch": 2.46,
3126
+ "learning_rate": 1.6620147361054806e-06,
3127
+ "loss": 0.1903,
3128
+ "step": 520
3129
+ },
3130
+ {
3131
+ "epoch": 2.46,
3132
+ "learning_rate": 1.6335536308674204e-06,
3133
+ "loss": 0.2013,
3134
+ "step": 521
3135
+ },
3136
+ {
3137
+ "epoch": 2.47,
3138
+ "learning_rate": 1.6053166362432659e-06,
3139
+ "loss": 0.1702,
3140
+ "step": 522
3141
+ },
3142
+ {
3143
+ "epoch": 2.47,
3144
+ "learning_rate": 1.577304508612717e-06,
3145
+ "loss": 0.1571,
3146
+ "step": 523
3147
+ },
3148
+ {
3149
+ "epoch": 2.47,
3150
+ "learning_rate": 1.5495179983319986e-06,
3151
+ "loss": 0.1918,
3152
+ "step": 524
3153
+ },
3154
+ {
3155
+ "epoch": 2.48,
3156
+ "learning_rate": 1.52195784971376e-06,
3157
+ "loss": 0.1844,
3158
+ "step": 525
3159
+ },
3160
+ {
3161
+ "epoch": 2.48,
3162
+ "learning_rate": 1.494624801007144e-06,
3163
+ "loss": 0.2017,
3164
+ "step": 526
3165
+ },
3166
+ {
3167
+ "epoch": 2.49,
3168
+ "learning_rate": 1.4675195843779989e-06,
3169
+ "loss": 0.1924,
3170
+ "step": 527
3171
+ },
3172
+ {
3173
+ "epoch": 2.49,
3174
+ "learning_rate": 1.4406429258892762e-06,
3175
+ "loss": 0.181,
3176
+ "step": 528
3177
+ },
3178
+ {
3179
+ "epoch": 2.5,
3180
+ "learning_rate": 1.4139955454815757e-06,
3181
+ "loss": 0.1809,
3182
+ "step": 529
3183
+ },
3184
+ {
3185
+ "epoch": 2.5,
3186
+ "learning_rate": 1.3875781569538682e-06,
3187
+ "loss": 0.1682,
3188
+ "step": 530
3189
+ },
3190
+ {
3191
+ "epoch": 2.51,
3192
+ "learning_rate": 1.3613914679443675e-06,
3193
+ "loss": 0.1746,
3194
+ "step": 531
3195
+ },
3196
+ {
3197
+ "epoch": 2.51,
3198
+ "learning_rate": 1.3354361799115745e-06,
3199
+ "loss": 0.1989,
3200
+ "step": 532
3201
+ },
3202
+ {
3203
+ "epoch": 2.52,
3204
+ "learning_rate": 1.3097129881154936e-06,
3205
+ "loss": 0.1749,
3206
+ "step": 533
3207
+ },
3208
+ {
3209
+ "epoch": 2.52,
3210
+ "learning_rate": 1.2842225815990062e-06,
3211
+ "loss": 0.175,
3212
+ "step": 534
3213
+ },
3214
+ {
3215
+ "epoch": 2.53,
3216
+ "learning_rate": 1.258965643169412e-06,
3217
+ "loss": 0.1622,
3218
+ "step": 535
3219
+ },
3220
+ {
3221
+ "epoch": 2.53,
3222
+ "learning_rate": 1.2339428493801387e-06,
3223
+ "loss": 0.1854,
3224
+ "step": 536
3225
+ },
3226
+ {
3227
+ "epoch": 2.54,
3228
+ "learning_rate": 1.2091548705126188e-06,
3229
+ "loss": 0.1882,
3230
+ "step": 537
3231
+ },
3232
+ {
3233
+ "epoch": 2.54,
3234
+ "learning_rate": 1.1846023705583442e-06,
3235
+ "loss": 0.2027,
3236
+ "step": 538
3237
+ },
3238
+ {
3239
+ "epoch": 2.55,
3240
+ "learning_rate": 1.1602860072010648e-06,
3241
+ "loss": 0.1575,
3242
+ "step": 539
3243
+ },
3244
+ {
3245
+ "epoch": 2.55,
3246
+ "learning_rate": 1.1362064317991793e-06,
3247
+ "loss": 0.1786,
3248
+ "step": 540
3249
+ },
3250
+ {
3251
+ "epoch": 2.55,
3252
+ "learning_rate": 1.1123642893682862e-06,
3253
+ "loss": 0.195,
3254
+ "step": 541
3255
+ },
3256
+ {
3257
+ "epoch": 2.56,
3258
+ "learning_rate": 1.0887602185639134e-06,
3259
+ "loss": 0.195,
3260
+ "step": 542
3261
+ },
3262
+ {
3263
+ "epoch": 2.56,
3264
+ "learning_rate": 1.065394851664394e-06,
3265
+ "loss": 0.1893,
3266
+ "step": 543
3267
+ },
3268
+ {
3269
+ "epoch": 2.57,
3270
+ "learning_rate": 1.042268814553944e-06,
3271
+ "loss": 0.1634,
3272
+ "step": 544
3273
+ },
3274
+ {
3275
+ "epoch": 2.57,
3276
+ "learning_rate": 1.0193827267058897e-06,
3277
+ "loss": 0.1841,
3278
+ "step": 545
3279
+ },
3280
+ {
3281
+ "epoch": 2.58,
3282
+ "learning_rate": 9.967372011660814e-07,
3283
+ "loss": 0.1964,
3284
+ "step": 546
3285
+ },
3286
+ {
3287
+ "epoch": 2.58,
3288
+ "learning_rate": 9.743328445364608e-07,
3289
+ "loss": 0.156,
3290
+ "step": 547
3291
+ },
3292
+ {
3293
+ "epoch": 2.59,
3294
+ "learning_rate": 9.521702569588199e-07,
3295
+ "loss": 0.1736,
3296
+ "step": 548
3297
+ },
3298
+ {
3299
+ "epoch": 2.59,
3300
+ "learning_rate": 9.302500320987218e-07,
3301
+ "loss": 0.1783,
3302
+ "step": 549
3303
+ },
3304
+ {
3305
+ "epoch": 2.6,
3306
+ "learning_rate": 9.085727571296055e-07,
3307
+ "loss": 0.1903,
3308
+ "step": 550
3309
+ },
3310
+ {
3311
+ "epoch": 2.6,
3312
+ "learning_rate": 8.871390127170443e-07,
3313
+ "loss": 0.1879,
3314
+ "step": 551
3315
+ },
3316
+ {
3317
+ "epoch": 2.61,
3318
+ "learning_rate": 8.659493730032009e-07,
3319
+ "loss": 0.2011,
3320
+ "step": 552
3321
+ },
3322
+ {
3323
+ "epoch": 2.61,
3324
+ "learning_rate": 8.450044055914497e-07,
3325
+ "loss": 0.2024,
3326
+ "step": 553
3327
+ },
3328
+ {
3329
+ "epoch": 2.62,
3330
+ "learning_rate": 8.243046715311597e-07,
3331
+ "loss": 0.1711,
3332
+ "step": 554
3333
+ },
3334
+ {
3335
+ "epoch": 2.62,
3336
+ "learning_rate": 8.038507253026872e-07,
3337
+ "loss": 0.1971,
3338
+ "step": 555
3339
+ },
3340
+ {
3341
+ "epoch": 2.63,
3342
+ "learning_rate": 7.836431148025003e-07,
3343
+ "loss": 0.1723,
3344
+ "step": 556
3345
+ },
3346
+ {
3347
+ "epoch": 2.63,
3348
+ "learning_rate": 7.636823813285177e-07,
3349
+ "loss": 0.1889,
3350
+ "step": 557
3351
+ },
3352
+ {
3353
+ "epoch": 2.64,
3354
+ "learning_rate": 7.439690595656013e-07,
3355
+ "loss": 0.1597,
3356
+ "step": 558
3357
+ },
3358
+ {
3359
+ "epoch": 2.64,
3360
+ "learning_rate": 7.245036775712388e-07,
3361
+ "loss": 0.2059,
3362
+ "step": 559
3363
+ },
3364
+ {
3365
+ "epoch": 2.64,
3366
+ "learning_rate": 7.052867567613952e-07,
3367
+ "loss": 0.1939,
3368
+ "step": 560
3369
+ },
3370
+ {
3371
+ "epoch": 2.65,
3372
+ "learning_rate": 6.863188118965447e-07,
3373
+ "loss": 0.1914,
3374
+ "step": 561
3375
+ },
3376
+ {
3377
+ "epoch": 2.65,
3378
+ "learning_rate": 6.676003510678908e-07,
3379
+ "loss": 0.1998,
3380
+ "step": 562
3381
+ },
3382
+ {
3383
+ "epoch": 2.66,
3384
+ "learning_rate": 6.491318756837417e-07,
3385
+ "loss": 0.1872,
3386
+ "step": 563
3387
+ },
3388
+ {
3389
+ "epoch": 2.66,
3390
+ "learning_rate": 6.309138804560921e-07,
3391
+ "loss": 0.1918,
3392
+ "step": 564
3393
+ },
3394
+ {
3395
+ "epoch": 2.67,
3396
+ "learning_rate": 6.129468533873617e-07,
3397
+ "loss": 0.219,
3398
+ "step": 565
3399
+ },
3400
+ {
3401
+ "epoch": 2.67,
3402
+ "learning_rate": 5.952312757573342e-07,
3403
+ "loss": 0.1958,
3404
+ "step": 566
3405
+ },
3406
+ {
3407
+ "epoch": 2.68,
3408
+ "learning_rate": 5.777676221102524e-07,
3409
+ "loss": 0.1686,
3410
+ "step": 567
3411
+ },
3412
+ {
3413
+ "epoch": 2.68,
3414
+ "learning_rate": 5.605563602421149e-07,
3415
+ "loss": 0.1935,
3416
+ "step": 568
3417
+ },
3418
+ {
3419
+ "epoch": 2.69,
3420
+ "learning_rate": 5.435979511881472e-07,
3421
+ "loss": 0.1808,
3422
+ "step": 569
3423
+ },
3424
+ {
3425
+ "epoch": 2.69,
3426
+ "learning_rate": 5.268928492104442e-07,
3427
+ "loss": 0.1664,
3428
+ "step": 570
3429
+ },
3430
+ {
3431
+ "epoch": 2.7,
3432
+ "learning_rate": 5.104415017858055e-07,
3433
+ "loss": 0.2028,
3434
+ "step": 571
3435
+ },
3436
+ {
3437
+ "epoch": 2.7,
3438
+ "learning_rate": 4.94244349593751e-07,
3439
+ "loss": 0.182,
3440
+ "step": 572
3441
+ },
3442
+ {
3443
+ "epoch": 2.71,
3444
+ "learning_rate": 4.783018265047179e-07,
3445
+ "loss": 0.1604,
3446
+ "step": 573
3447
+ },
3448
+ {
3449
+ "epoch": 2.71,
3450
+ "learning_rate": 4.626143595684318e-07,
3451
+ "loss": 0.1901,
3452
+ "step": 574
3453
+ },
3454
+ {
3455
+ "epoch": 2.72,
3456
+ "learning_rate": 4.4718236900247236e-07,
3457
+ "loss": 0.1894,
3458
+ "step": 575
3459
+ },
3460
+ {
3461
+ "epoch": 2.72,
3462
+ "learning_rate": 4.3200626818101664e-07,
3463
+ "loss": 0.1872,
3464
+ "step": 576
3465
+ },
3466
+ {
3467
+ "epoch": 2.72,
3468
+ "learning_rate": 4.170864636237648e-07,
3469
+ "loss": 0.1962,
3470
+ "step": 577
3471
+ },
3472
+ {
3473
+ "epoch": 2.73,
3474
+ "learning_rate": 4.024233549850509e-07,
3475
+ "loss": 0.1899,
3476
+ "step": 578
3477
+ },
3478
+ {
3479
+ "epoch": 2.73,
3480
+ "learning_rate": 3.880173350431404e-07,
3481
+ "loss": 0.2075,
3482
+ "step": 579
3483
+ },
3484
+ {
3485
+ "epoch": 2.74,
3486
+ "learning_rate": 3.73868789689702e-07,
3487
+ "loss": 0.2047,
3488
+ "step": 580
3489
+ },
3490
+ {
3491
+ "epoch": 2.74,
3492
+ "learning_rate": 3.599780979194811e-07,
3493
+ "loss": 0.1934,
3494
+ "step": 581
3495
+ },
3496
+ {
3497
+ "epoch": 2.75,
3498
+ "learning_rate": 3.463456318201375e-07,
3499
+ "loss": 0.2041,
3500
+ "step": 582
3501
+ },
3502
+ {
3503
+ "epoch": 2.75,
3504
+ "learning_rate": 3.329717565622825e-07,
3505
+ "loss": 0.1857,
3506
+ "step": 583
3507
+ },
3508
+ {
3509
+ "epoch": 2.76,
3510
+ "learning_rate": 3.1985683038969984e-07,
3511
+ "loss": 0.1718,
3512
+ "step": 584
3513
+ },
3514
+ {
3515
+ "epoch": 2.76,
3516
+ "learning_rate": 3.0700120460974705e-07,
3517
+ "loss": 0.1724,
3518
+ "step": 585
3519
+ },
3520
+ {
3521
+ "epoch": 2.77,
3522
+ "learning_rate": 2.9440522358394233e-07,
3523
+ "loss": 0.191,
3524
+ "step": 586
3525
+ },
3526
+ {
3527
+ "epoch": 2.77,
3528
+ "learning_rate": 2.8206922471874396e-07,
3529
+ "loss": 0.1777,
3530
+ "step": 587
3531
+ },
3532
+ {
3533
+ "epoch": 2.78,
3534
+ "learning_rate": 2.6999353845651113e-07,
3535
+ "loss": 0.1712,
3536
+ "step": 588
3537
+ },
3538
+ {
3539
+ "epoch": 2.78,
3540
+ "learning_rate": 2.5817848826665494e-07,
3541
+ "loss": 0.1988,
3542
+ "step": 589
3543
+ },
3544
+ {
3545
+ "epoch": 2.79,
3546
+ "learning_rate": 2.466243906369681e-07,
3547
+ "loss": 0.1662,
3548
+ "step": 590
3549
+ },
3550
+ {
3551
+ "epoch": 2.79,
3552
+ "learning_rate": 2.3533155506515026e-07,
3553
+ "loss": 0.1629,
3554
+ "step": 591
3555
+ },
3556
+ {
3557
+ "epoch": 2.8,
3558
+ "learning_rate": 2.2430028405051817e-07,
3559
+ "loss": 0.1653,
3560
+ "step": 592
3561
+ },
3562
+ {
3563
+ "epoch": 2.8,
3564
+ "learning_rate": 2.1353087308590314e-07,
3565
+ "loss": 0.187,
3566
+ "step": 593
3567
+ },
3568
+ {
3569
+ "epoch": 2.81,
3570
+ "learning_rate": 2.030236106497352e-07,
3571
+ "loss": 0.1662,
3572
+ "step": 594
3573
+ },
3574
+ {
3575
+ "epoch": 2.81,
3576
+ "learning_rate": 1.9277877819831148e-07,
3577
+ "loss": 0.1851,
3578
+ "step": 595
3579
+ },
3580
+ {
3581
+ "epoch": 2.81,
3582
+ "learning_rate": 1.8279665015826341e-07,
3583
+ "loss": 0.2034,
3584
+ "step": 596
3585
+ },
3586
+ {
3587
+ "epoch": 2.82,
3588
+ "learning_rate": 1.730774939192037e-07,
3589
+ "loss": 0.1748,
3590
+ "step": 597
3591
+ },
3592
+ {
3593
+ "epoch": 2.82,
3594
+ "learning_rate": 1.6362156982656085e-07,
3595
+ "loss": 0.1716,
3596
+ "step": 598
3597
+ },
3598
+ {
3599
+ "epoch": 2.83,
3600
+ "learning_rate": 1.5442913117460823e-07,
3601
+ "loss": 0.1819,
3602
+ "step": 599
3603
+ },
3604
+ {
3605
+ "epoch": 2.83,
3606
+ "learning_rate": 1.4550042419967714e-07,
3607
+ "loss": 0.1674,
3608
+ "step": 600
3609
+ },
3610
+ {
3611
+ "epoch": 2.84,
3612
+ "learning_rate": 1.368356880735655e-07,
3613
+ "loss": 0.1838,
3614
+ "step": 601
3615
+ },
3616
+ {
3617
+ "epoch": 2.84,
3618
+ "learning_rate": 1.284351548971241e-07,
3619
+ "loss": 0.1835,
3620
+ "step": 602
3621
+ },
3622
+ {
3623
+ "epoch": 2.85,
3624
+ "learning_rate": 1.2029904969404482e-07,
3625
+ "loss": 0.1884,
3626
+ "step": 603
3627
+ },
3628
+ {
3629
+ "epoch": 2.85,
3630
+ "learning_rate": 1.1242759040482997e-07,
3631
+ "loss": 0.2155,
3632
+ "step": 604
3633
+ },
3634
+ {
3635
+ "epoch": 2.86,
3636
+ "learning_rate": 1.0482098788095807e-07,
3637
+ "loss": 0.1775,
3638
+ "step": 605
3639
+ },
3640
+ {
3641
+ "epoch": 2.86,
3642
+ "learning_rate": 9.747944587923164e-08,
3643
+ "loss": 0.1821,
3644
+ "step": 606
3645
+ },
3646
+ {
3647
+ "epoch": 2.87,
3648
+ "learning_rate": 9.040316105631941e-08,
3649
+ "loss": 0.1539,
3650
+ "step": 607
3651
+ },
3652
+ {
3653
+ "epoch": 2.87,
3654
+ "learning_rate": 8.359232296349163e-08,
3655
+ "loss": 0.176,
3656
+ "step": 608
3657
+ },
3658
+ {
3659
+ "epoch": 2.88,
3660
+ "learning_rate": 7.704711404154297e-08,
3661
+ "loss": 0.2012,
3662
+ "step": 609
3663
+ },
3664
+ {
3665
+ "epoch": 2.88,
3666
+ "learning_rate": 7.076770961589984e-08,
3667
+ "loss": 0.1787,
3668
+ "step": 610
3669
+ },
3670
+ {
3671
+ "epoch": 2.89,
3672
+ "learning_rate": 6.475427789192967e-08,
3673
+ "loss": 0.1893,
3674
+ "step": 611
3675
+ },
3676
+ {
3677
+ "epoch": 2.89,
3678
+ "learning_rate": 5.900697995043114e-08,
3679
+ "loss": 0.1783,
3680
+ "step": 612
3681
+ },
3682
+ {
3683
+ "epoch": 2.89,
3684
+ "learning_rate": 5.3525969743324356e-08,
3685
+ "loss": 0.1946,
3686
+ "step": 613
3687
+ },
3688
+ {
3689
+ "epoch": 2.9,
3690
+ "learning_rate": 4.83113940895219e-08,
3691
+ "loss": 0.1457,
3692
+ "step": 614
3693
+ },
3694
+ {
3695
+ "epoch": 2.9,
3696
+ "learning_rate": 4.336339267099754e-08,
3697
+ "loss": 0.1603,
3698
+ "step": 615
3699
+ },
3700
+ {
3701
+ "epoch": 2.91,
3702
+ "learning_rate": 3.86820980290481e-08,
3703
+ "loss": 0.1765,
3704
+ "step": 616
3705
+ },
3706
+ {
3707
+ "epoch": 2.91,
3708
+ "learning_rate": 3.4267635560737425e-08,
3709
+ "loss": 0.192,
3710
+ "step": 617
3711
+ },
3712
+ {
3713
+ "epoch": 2.92,
3714
+ "learning_rate": 3.012012351554017e-08,
3715
+ "loss": 0.1892,
3716
+ "step": 618
3717
+ },
3718
+ {
3719
+ "epoch": 2.92,
3720
+ "learning_rate": 2.6239672992176556e-08,
3721
+ "loss": 0.1954,
3722
+ "step": 619
3723
+ },
3724
+ {
3725
+ "epoch": 2.93,
3726
+ "learning_rate": 2.262638793563032e-08,
3727
+ "loss": 0.1655,
3728
+ "step": 620
3729
+ },
3730
+ {
3731
+ "epoch": 2.93,
3732
+ "learning_rate": 1.9280365134370926e-08,
3733
+ "loss": 0.1963,
3734
+ "step": 621
3735
+ },
3736
+ {
3737
+ "epoch": 2.94,
3738
+ "learning_rate": 1.620169421775897e-08,
3739
+ "loss": 0.138,
3740
+ "step": 622
3741
+ },
3742
+ {
3743
+ "epoch": 2.94,
3744
+ "learning_rate": 1.3390457653639221e-08,
3745
+ "loss": 0.1581,
3746
+ "step": 623
3747
+ },
3748
+ {
3749
+ "epoch": 2.95,
3750
+ "learning_rate": 1.0846730746143507e-08,
3751
+ "loss": 0.1939,
3752
+ "step": 624
3753
+ },
3754
+ {
3755
+ "epoch": 2.95,
3756
+ "learning_rate": 8.570581633661202e-09,
3757
+ "loss": 0.1725,
3758
+ "step": 625
3759
+ },
3760
+ {
3761
+ "epoch": 2.96,
3762
+ "learning_rate": 6.562071287022908e-09,
3763
+ "loss": 0.1997,
3764
+ "step": 626
3765
+ },
3766
+ {
3767
+ "epoch": 2.96,
3768
+ "learning_rate": 4.821253507862889e-09,
3769
+ "loss": 0.1769,
3770
+ "step": 627
3771
+ },
3772
+ {
3773
+ "epoch": 2.97,
3774
+ "learning_rate": 3.3481749271768726e-09,
3775
+ "loss": 0.1805,
3776
+ "step": 628
3777
+ },
3778
+ {
3779
+ "epoch": 2.97,
3780
+ "learning_rate": 2.142875004079725e-09,
3781
+ "loss": 0.1987,
3782
+ "step": 629
3783
+ },
3784
+ {
3785
+ "epoch": 2.98,
3786
+ "learning_rate": 1.2053860247385196e-09,
3787
+ "loss": 0.18,
3788
+ "step": 630
3789
+ },
3790
+ {
3791
+ "epoch": 2.98,
3792
+ "learning_rate": 5.357331015176659e-10,
3793
+ "loss": 0.1754,
3794
+ "step": 631
3795
+ },
3796
+ {
3797
+ "epoch": 2.98,
3798
+ "learning_rate": 1.3393417229723427e-10,
3799
+ "loss": 0.1674,
3800
+ "step": 632
3801
+ },
3802
+ {
3803
+ "epoch": 2.99,
3804
+ "learning_rate": 0.0,
3805
+ "loss": 0.1724,
3806
+ "step": 633
3807
+ },
3808
+ {
3809
+ "epoch": 2.99,
3810
+ "step": 633,
3811
+ "total_flos": 6.476887515037958e+18,
3812
+ "train_loss": 0.3617525693694186,
3813
+ "train_runtime": 84740.7725,
3814
+ "train_samples_per_second": 0.959,
3815
+ "train_steps_per_second": 0.007
3816
+ }
3817
+ ],
3818
+ "max_steps": 633,
3819
+ "num_train_epochs": 3,
3820
+ "total_flos": 6.476887515037958e+18,
3821
+ "trial_name": null,
3822
+ "trial_params": null
3823
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:68f6fa8ea8e1d5a31ff9622e5e86ace430c4de94640f6c83414e801cf5594d39
3
+ size 3771