|
|
|
|
|
import atexit |
|
import bisect |
|
import multiprocessing as mp |
|
from collections import deque |
|
import cv2 |
|
import torch |
|
|
|
from visualizer import TrackVisualizer |
|
|
|
from detectron2.data import MetadataCatalog |
|
from detectron2.engine.defaults import DefaultPredictor |
|
from detectron2.structures import Instances |
|
from detectron2.utils.video_visualizer import VideoVisualizer |
|
from detectron2.utils.visualizer import ColorMode |
|
|
|
|
|
class VisualizationDemo(object): |
|
def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False, conf_thres=0.5): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
instance_mode (ColorMode): |
|
parallel (bool): whether to run the model in different processes from visualization. |
|
Useful since the visualization logic can be slow. |
|
""" |
|
self.metadata = MetadataCatalog.get( |
|
cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" |
|
) |
|
self.cpu_device = torch.device("cpu") |
|
self.instance_mode = instance_mode |
|
|
|
self.parallel = parallel |
|
if parallel: |
|
num_gpu = torch.cuda.device_count() |
|
self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) |
|
else: |
|
self.predictor = VideoPredictor(cfg) |
|
self.conf_thres = conf_thres |
|
|
|
def run_on_video(self, frames, audio_feats): |
|
""" |
|
Args: |
|
frames (List[np.ndarray]): a list of images of shape (H, W, C) (in BGR order). |
|
This is the format used by OpenCV. |
|
Returns: |
|
predictions (dict): the output of the model. |
|
vis_output (VisImage): the visualized image output. |
|
""" |
|
vis_output = None |
|
v_input = {"frames": frames, "audio_feats": audio_feats} |
|
predictions = self.predictor(v_input) |
|
|
|
image_size = predictions["image_size"] |
|
_pred_scores = predictions["pred_scores"] |
|
_pred_labels = predictions["pred_labels"] |
|
_pred_masks = predictions["pred_masks"] |
|
|
|
pred_scores, pred_labels, pred_masks = [], [], [] |
|
for s, l, m in zip(_pred_scores, _pred_labels, _pred_masks): |
|
if s > self.conf_thres: |
|
pred_scores.append(s) |
|
pred_labels.append(l) |
|
pred_masks.append(m) |
|
|
|
frame_masks = list(zip(*pred_masks)) |
|
total_vis_output = [] |
|
for frame_idx in range(len(frames)): |
|
frame = frames[frame_idx][:, :, ::-1] |
|
visualizer = TrackVisualizer(frame, self.metadata, instance_mode=self.instance_mode) |
|
ins = Instances(image_size) |
|
if len(pred_scores) > 0: |
|
ins.scores = pred_scores |
|
ins.pred_classes = pred_labels |
|
ins.pred_masks = torch.stack(frame_masks[frame_idx], dim=0) |
|
|
|
vis_output = visualizer.draw_instance_predictions(predictions=ins) |
|
total_vis_output.append(vis_output) |
|
|
|
return predictions, total_vis_output |
|
|
|
|
|
class VideoPredictor(DefaultPredictor): |
|
""" |
|
Create a simple end-to-end predictor with the given config that runs on |
|
single device for a single input image. |
|
Compared to using the model directly, this class does the following additions: |
|
1. Load checkpoint from `cfg.MODEL.WEIGHTS`. |
|
2. Always take BGR image as the input and apply conversion defined by `cfg.INPUT.FORMAT`. |
|
3. Apply resizing defined by `cfg.INPUT.{MIN,MAX}_SIZE_TEST`. |
|
4. Take one input image and produce a single output, instead of a batch. |
|
If you'd like to do anything more fancy, please refer to its source code |
|
as examples to build and use the model manually. |
|
Attributes: |
|
metadata (Metadata): the metadata of the underlying dataset, obtained from |
|
cfg.DATASETS.TEST. |
|
Examples: |
|
:: |
|
pred = DefaultPredictor(cfg) |
|
inputs = cv2.imread("input.jpg") |
|
outputs = pred(inputs) |
|
""" |
|
def __call__(self, v_input): |
|
""" |
|
Args: |
|
original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). |
|
Returns: |
|
predictions (dict): |
|
the output of the model for one image only. |
|
See :doc:`/tutorials/models` for details about the format. |
|
""" |
|
with torch.no_grad(): |
|
input_frames = [] |
|
frames = v_input["frames"] |
|
audio_feats = v_input["audio_feats"] |
|
for original_image in frames: |
|
|
|
if self.input_format == "RGB": |
|
|
|
original_image = original_image[:, :, ::-1] |
|
height, width = original_image.shape[:2] |
|
image = self.aug.get_transform(original_image).apply_image(original_image) |
|
image = torch.as_tensor(image.astype("float32").transpose(2, 0, 1)) |
|
input_frames.append(image) |
|
|
|
inputs = {"image": input_frames, "height": height, "width": width, "audio": audio_feats} |
|
|
|
|
|
|
|
|
|
|
|
predictions = self.model([inputs]) |
|
return predictions |
|
|
|
|
|
class AsyncPredictor: |
|
""" |
|
A predictor that runs the model asynchronously, possibly on >1 GPUs. |
|
Because rendering the visualization takes considerably amount of time, |
|
this helps improve throughput when rendering videos. |
|
""" |
|
|
|
class _StopToken: |
|
pass |
|
|
|
class _PredictWorker(mp.Process): |
|
def __init__(self, cfg, task_queue, result_queue): |
|
self.cfg = cfg |
|
self.task_queue = task_queue |
|
self.result_queue = result_queue |
|
super().__init__() |
|
|
|
def run(self): |
|
predictor = VideoPredictor(self.cfg) |
|
|
|
while True: |
|
task = self.task_queue.get() |
|
if isinstance(task, AsyncPredictor._StopToken): |
|
break |
|
idx, data = task |
|
result = predictor(data) |
|
self.result_queue.put((idx, result)) |
|
|
|
def __init__(self, cfg, num_gpus: int = 1): |
|
""" |
|
Args: |
|
cfg (CfgNode): |
|
num_gpus (int): if 0, will run on CPU |
|
""" |
|
num_workers = max(num_gpus, 1) |
|
self.task_queue = mp.Queue(maxsize=num_workers * 3) |
|
self.result_queue = mp.Queue(maxsize=num_workers * 3) |
|
self.procs = [] |
|
for gpuid in range(max(num_gpus, 1)): |
|
cfg = cfg.clone() |
|
cfg.defrost() |
|
cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" |
|
self.procs.append( |
|
AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) |
|
) |
|
|
|
self.put_idx = 0 |
|
self.get_idx = 0 |
|
self.result_rank = [] |
|
self.result_data = [] |
|
|
|
for p in self.procs: |
|
p.start() |
|
atexit.register(self.shutdown) |
|
|
|
def put(self, image): |
|
self.put_idx += 1 |
|
self.task_queue.put((self.put_idx, image)) |
|
|
|
def get(self): |
|
self.get_idx += 1 |
|
if len(self.result_rank) and self.result_rank[0] == self.get_idx: |
|
res = self.result_data[0] |
|
del self.result_data[0], self.result_rank[0] |
|
return res |
|
|
|
while True: |
|
|
|
idx, res = self.result_queue.get() |
|
if idx == self.get_idx: |
|
return res |
|
insert = bisect.bisect(self.result_rank, idx) |
|
self.result_rank.insert(insert, idx) |
|
self.result_data.insert(insert, res) |
|
|
|
def __len__(self): |
|
return self.put_idx - self.get_idx |
|
|
|
def __call__(self, image): |
|
self.put(image) |
|
return self.get() |
|
|
|
def shutdown(self): |
|
for _ in self.procs: |
|
self.task_queue.put(AsyncPredictor._StopToken()) |
|
|
|
@property |
|
def default_buffer_size(self): |
|
return len(self.procs) * 5 |
|
|