Tyler Ashworth commited on
Commit
b8d916a
1 Parent(s): e899a89

Remove README

Browse files
Files changed (1) hide show
  1. README.md +0 -47
README.md DELETED
@@ -1,47 +0,0 @@
1
- ---
2
- language:
3
- - en
4
- metrics:
5
- - f1
6
- - accuracy
7
- pipeline_tag: text-classification
8
- widget:
9
- - text: "Every woman wants to be a model. It's codeword for 'I get everything for free and people want me'"
10
- ---
11
- ### distilbert-base-sexism-detector
12
- This is a fine-tuned model of distilbert-base on the Explainable Detection of Online Sexism (EDOS) dataset. It is intended to be used as a classification model for identifying tweets (0 - not sexist; 1 - sexist).
13
-
14
- **This is a light model with an 81.2 F1 score. Use this model for fase prediction using the online API, if you like to see our best model with 86.3 F1 score , use this [link](https://huggingface.co/NLP-LTU/BERTweet-large-sexism-detector).**
15
-
16
- Classification examples (use these example in the Hosted Inference API in the right panel ):
17
-
18
- |Prediction|Tweet|
19
- |-----|--------|
20
- |sexist |Every woman wants to be a model. It's codeword for "I get everything for free and people want me" |
21
- |not sexist |basically I placed more value on her than I should then?|
22
- # More Details
23
- For more details about the datasets and eval results, see (we will updated the page with our paper link)
24
- # How to use
25
- ```python
26
- from transformers import AutoModelForSequenceClassification, AutoTokenizer,pipeline
27
- import torch
28
- model = AutoModelForSequenceClassification.from_pretrained('NLP-LTU/distilbert-sexism-detector')
29
- tokenizer = AutoTokenizer.from_pretrained('distilbert-base-uncased')
30
- classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
31
- prediction=classifier("Every woman wants to be a model. It's codeword for 'I get everything for free and people want me' ")
32
- label_pred = 'not sexist' if prediction == 0 else 'sexist'
33
-
34
- print(label_pred)
35
-
36
- ```
37
- ```
38
- precision recall f1-score support
39
-
40
- not sexsit 0.9000 0.9264 0.9130 3030
41
- sexist 0.7469 0.6784 0.7110 970
42
-
43
- accuracy 0.8662 4000
44
- macro avg 0.8234 0.8024 0.8120 4000
45
- weighted avg 0.8628 0.8662 0.8640 4000
46
-
47
- ```