rshei commited on
Commit
fe17b6b
·
1 Parent(s): bdb815a

layoutlmv3-finetuned-cord_100

Browse files
Files changed (1) hide show
  1. README.md +99 -0
README.md ADDED
@@ -0,0 +1,99 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: cc-by-nc-sa-4.0
3
+ base_model: microsoft/layoutlmv3-base
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - cord-layoutlmv3
8
+ metrics:
9
+ - precision
10
+ - recall
11
+ - f1
12
+ - accuracy
13
+ model-index:
14
+ - name: layoutlmv3-finetuned-cord_100
15
+ results:
16
+ - task:
17
+ name: Token Classification
18
+ type: token-classification
19
+ dataset:
20
+ name: cord-layoutlmv3
21
+ type: cord-layoutlmv3
22
+ config: cord
23
+ split: test
24
+ args: cord
25
+ metrics:
26
+ - name: Precision
27
+ type: precision
28
+ value: 0.9243884358784284
29
+ - name: Recall
30
+ type: recall
31
+ value: 0.9333832335329342
32
+ - name: F1
33
+ type: f1
34
+ value: 0.9288640595903166
35
+ - name: Accuracy
36
+ type: accuracy
37
+ value: 0.9363327674023769
38
+ ---
39
+
40
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
41
+ should probably proofread and complete it, then remove this comment. -->
42
+
43
+ # layoutlmv3-finetuned-cord_100
44
+
45
+ This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the cord-layoutlmv3 dataset.
46
+ It achieves the following results on the evaluation set:
47
+ - Loss: 0.3467
48
+ - Precision: 0.9244
49
+ - Recall: 0.9334
50
+ - F1: 0.9289
51
+ - Accuracy: 0.9363
52
+
53
+ ## Model description
54
+
55
+ More information needed
56
+
57
+ ## Intended uses & limitations
58
+
59
+ More information needed
60
+
61
+ ## Training and evaluation data
62
+
63
+ More information needed
64
+
65
+ ## Training procedure
66
+
67
+ ### Training hyperparameters
68
+
69
+ The following hyperparameters were used during training:
70
+ - learning_rate: 1e-05
71
+ - train_batch_size: 5
72
+ - eval_batch_size: 5
73
+ - seed: 42
74
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
75
+ - lr_scheduler_type: linear
76
+ - training_steps: 2500
77
+
78
+ ### Training results
79
+
80
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
+ | No log | 4.17 | 250 | 0.5174 | 0.8469 | 0.8735 | 0.8600 | 0.8790 |
83
+ | 0.5511 | 8.33 | 500 | 0.3975 | 0.8999 | 0.9147 | 0.9072 | 0.9194 |
84
+ | 0.5511 | 12.5 | 750 | 0.3872 | 0.9015 | 0.9184 | 0.9099 | 0.9189 |
85
+ | 0.1802 | 16.67 | 1000 | 0.3416 | 0.9180 | 0.9296 | 0.9238 | 0.9338 |
86
+ | 0.1802 | 20.83 | 1250 | 0.3311 | 0.9159 | 0.9289 | 0.9223 | 0.9359 |
87
+ | 0.0836 | 25.0 | 1500 | 0.3457 | 0.9192 | 0.9281 | 0.9236 | 0.9334 |
88
+ | 0.0836 | 29.17 | 1750 | 0.3347 | 0.9202 | 0.9319 | 0.9260 | 0.9291 |
89
+ | 0.0473 | 33.33 | 2000 | 0.3677 | 0.9194 | 0.9304 | 0.9249 | 0.9253 |
90
+ | 0.0473 | 37.5 | 2250 | 0.3433 | 0.9279 | 0.9341 | 0.9310 | 0.9376 |
91
+ | 0.0342 | 41.67 | 2500 | 0.3467 | 0.9244 | 0.9334 | 0.9289 | 0.9363 |
92
+
93
+
94
+ ### Framework versions
95
+
96
+ - Transformers 4.32.1
97
+ - Pytorch 2.0.1+cu118
98
+ - Datasets 2.14.4
99
+ - Tokenizers 0.13.3