squanchd's picture
pop image
6191c38
from typing import Dict, List, Any
import numpy as np
from transformers import CLIPProcessor, CLIPModel
from PIL import Image
from io import BytesIO
import base64
class EndpointHandler():
def __init__(self, path=""):
# Preload all the elements you are going to need at inference.
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]:
"""
data args:
inputs (:obj: `str` | `PIL.Image` | `np.array`)
kwargs
Return:
A :obj:`list` | `dict`: will be serialized and returned
"""
inputs = data.pop("inputs", data)
words = inputs["words"]
imageData = inputs["image"]
image = Image.open(BytesIO(base64.b64decode(imageData)))
inputs = self.processor(text=words, images=image, return_tensors="pt", padding=True)
outputs = self.model(**inputs)
embeddings = outputs.image_embeds.detach().numpy().flatten().tolist()
return {"embeddings": embeddings}