|
from typing import Dict, List, Any |
|
import numpy as np |
|
from transformers import CLIPProcessor, CLIPModel |
|
from PIL import Image |
|
from io import BytesIO |
|
import base64 |
|
|
|
class EndpointHandler(): |
|
def __init__(self, path=""): |
|
|
|
self.model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32") |
|
self.processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32") |
|
|
|
|
|
def __call__(self, data: Dict[str, Any]) -> List[Dict[str, Any]]: |
|
""" |
|
data args: |
|
inputs (:obj: `str` | `PIL.Image` | `np.array`) |
|
kwargs |
|
Return: |
|
A :obj:`list` | `dict`: will be serialized and returned |
|
""" |
|
inputs = data.pop("inputs", data) |
|
words = inputs["words"] |
|
imageData = inputs["image"] |
|
image = Image.open(BytesIO(base64.b64decode(imageData))) |
|
inputs = self.processor(text=words, images=image, return_tensors="pt", padding=True) |
|
outputs = self.model(**inputs) |
|
embeddings = outputs.image_embeds.detach().numpy().flatten().tolist() |
|
return {"embeddings": embeddings} |