rriverar75 commited on
Commit
72fa3d3
·
1 Parent(s): 8f5b954

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +8 -7
README.md CHANGED
@@ -2,6 +2,7 @@
2
  license: apache-2.0
3
  base_model: distilroberta-base
4
  tags:
 
5
  - generated_from_trainer
6
  datasets:
7
  - glue
@@ -15,7 +16,7 @@ model-index:
15
  name: Text Classification
16
  type: text-classification
17
  dataset:
18
- name: glue
19
  type: glue
20
  config: mrpc
21
  split: validation
@@ -23,10 +24,10 @@ model-index:
23
  metrics:
24
  - name: Accuracy
25
  type: accuracy
26
- value: 0.8529411764705882
27
  - name: F1
28
  type: f1
29
- value: 0.8969072164948454
30
  ---
31
 
32
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -34,11 +35,11 @@ should probably proofread and complete it, then remove this comment. -->
34
 
35
  # distilroberta-base-mrpc-glue
36
 
37
- This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the glue dataset.
38
  It achieves the following results on the evaluation set:
39
- - Loss: 0.5895
40
- - Accuracy: 0.8529
41
- - F1: 0.8969
42
 
43
  ## Model description
44
 
 
2
  license: apache-2.0
3
  base_model: distilroberta-base
4
  tags:
5
+ - text-classification
6
  - generated_from_trainer
7
  datasets:
8
  - glue
 
16
  name: Text Classification
17
  type: text-classification
18
  dataset:
19
+ name: datasetX
20
  type: glue
21
  config: mrpc
22
  split: validation
 
24
  metrics:
25
  - name: Accuracy
26
  type: accuracy
27
+ value: 0.8333333333333334
28
  - name: F1
29
  type: f1
30
+ value: 0.8794326241134752
31
  ---
32
 
33
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
35
 
36
  # distilroberta-base-mrpc-glue
37
 
38
+ This model is a fine-tuned version of [distilroberta-base](https://huggingface.co/distilroberta-base) on the datasetX dataset.
39
  It achieves the following results on the evaluation set:
40
+ - Loss: 0.3874
41
+ - Accuracy: 0.8333
42
+ - F1: 0.8794
43
 
44
  ## Model description
45