Polaris / polaris /loopDev.py
rr-ss's picture
Upload folder using huggingface_hub
3290550 verified
import torch
import click
import cooler
import warnings
import numpy as np
from torch import nn
from tqdm import tqdm
from torch.cuda.amp import autocast
from importlib_resources import files
from polaris.utils.util_loop import bedpewriter
from polaris.model.polarisnet import polarisnet
from scipy.sparse import coo_matrix
from scipy.sparse import SparseEfficiencyWarning
warnings.filterwarnings("ignore", category=SparseEfficiencyWarning)
def getLocal(mat, i, jj, w, N):
if i >= 0 and jj >= 0 and i+w <= N and jj+w <= N:
mat = mat[i:i+w,jj:jj+w].toarray()
# print(f"global: {mat.shape}")
return mat[None,...]
# pad_width = ((up, down), (left, right))
slice_pos = [[i, i+w], [jj, jj+w]]
pad_width = [[0, 0], [0, 0]]
if i < 0:
pad_width[0][0] = -i
slice_pos[0][0] = 0
if jj < 0:
pad_width[1][0] = -jj
slice_pos[1][0] = 0
if i+w > N:
pad_width[0][1] = i+w-N
slice_pos[0][1] = N
if jj+w > N:
pad_width[1][1] = jj+w-N
slice_pos[1][1] = N
_mat = mat[slice_pos[0][0]:slice_pos[0][1],slice_pos[1][0]:slice_pos[1][1]].toarray()
padded_mat = np.pad(_mat, pad_width, mode='constant', constant_values=0)
# print(f"global: {padded_mat.shape}",slice_pos, pad_width)
return padded_mat[None,...]
def upperCoo2symm(row,col,data,N=None):
# print(np.max(row),np.max(col),N)
if N:
shape=(N,N)
else:
shape=(row.max() + 1,col.max() + 1)
sparse_matrix = coo_matrix((data, (row, col)), shape=shape)
symm = sparse_matrix + sparse_matrix.T
diagVal = symm.diagonal(0)/2
symm = symm.tocsr()
symm.setdiag(diagVal)
return symm
def processCoolFile(coolfile, cchrom):
extent = coolfile.extent(cchrom)
N = extent[1] - extent[0]
ccdata = coolfile.matrix(balance=True, sparse=True, as_pixels=True).fetch(cchrom)
ccdata['balanced'] = ccdata['balanced'].fillna(0)
ccdata['bin1_id'] -= extent[0]
ccdata['bin2_id'] -= extent[0]
ccdata['distance'] = ccdata['bin2_id'] - ccdata['bin1_id']
d_means = ccdata.groupby('distance')['balanced'].transform('mean')
ccdata['oe'] = ccdata['balanced'] / d_means
ccdata['oe'] = ccdata['oe'].fillna(0)
ccdata['oe'] = ccdata['oe'] / ccdata['oe'].max()
oeMat = upperCoo2symm(ccdata['bin1_id'].ravel(), ccdata['bin2_id'].ravel(), ccdata['oe'].ravel(), N)
return oeMat, N
@click.command()
@click.option('--batchsize', type=int, default=16, help='Batch size [16]')
@click.option('--cpu', type=bool, default=False, help='Use CPU [False]')
@click.option('--gpu', type=str, default=None, help='Comma-separated GPU indices [auto select]')
@click.option('--chrom', type=str, default=None, help='Comma separated chroms')
@click.option('--max_distance', type=int, default=3000000, help='Max distance (bp) between contact pairs')
@click.option('--resol',type=int,default=500,help ='Resolution')
@click.option('--image',type=int,default=1024,help ='Resolution')
@click.option('--center_size',type=int,default=224,help ='Resolution')
@click.option('-i','--input', type=str,required=True,help='Hi-C contact map path')
@click.option('-o','--output', type=str,required=True,help='.bedpe file path to save loop candidates')
def dev(batchsize, cpu, gpu, chrom, max_distance, resol, input, output, image, center_size):
""" *development function* Coming soon...
"""
print('polaris loop dev START :) ')
# center_size = 224
# center_size = image // 2
start_idx = (image - center_size) // 2
end_idx = (image + center_size) // 2
slice_obj_pred = (slice(None), slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
slice_obj_coord = (slice(None), slice(start_idx, end_idx), slice(start_idx, end_idx))
max_distance_bin=max_distance//resol
loopwriter = bedpewriter(output,resol,max_distance)
if cpu:
assert gpu is None, "\033[91m QAQ The CPU and GPU modes cannot be used simultaneously. Please check the command. \033[0m\n"
gpu = ['None']
device = torch.device("cpu")
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
else:
if torch.cuda.is_available():
if gpu is not None:
print("Using the specified GPU: " + gpu)
gpu=[int(i) for i in gpu.split(',')]
device = torch.device(f"cuda:{gpu[0]}")
else:
gpuIdx = torch.cuda.current_device()
device = torch.device(gpuIdx)
print("Automatically selected GPU: " + str(gpuIdx))
gpu=[gpu]
else:
device = torch.device("cpu")
gpu = ['None']
cpu = True
print('GPU is not available!')
print('Using CPU mode... (This may take significantly longer than using GPU mode.)')
coolfile = cooler.Cooler(input + '::/resolutions/' + str(resol))
modelstate = str(files('polaris').joinpath('model/sft_loop.pt'))
_modelstate = torch.load(modelstate, map_location=device.type)
parameters = _modelstate['parameters']
if chrom is None:
chrom =coolfile.chromnames
else:
chrom = chrom.split(',')
for rmchr in ['chrMT','MT','chrM','M','Y','chrY','X','chrX']: # 'Y','chrY','X','chrX'
if rmchr in chrom:
chrom.remove(rmchr)
print(f"\nAnalysing chroms: {chrom}")
model = polarisnet(
image_size=parameters['image_size'],
in_channels=parameters['in_channels'],
out_channels=parameters['out_channels'],
embed_dim=parameters['embed_dim'],
depths=parameters['depths'],
channels=parameters['channels'],
num_heads=parameters['num_heads'],
drop=parameters['drop'],
drop_path=parameters['drop_path'],
pos_embed=parameters['pos_embed']
).to(device)
model.load_state_dict(_modelstate['model_state_dict'])
if not cpu and len(gpu) > 1:
model = nn.DataParallel(model, device_ids=gpu)
model.eval()
chrom = tqdm(chrom, dynamic_ncols=True)
for _chrom in chrom:
chrom.desc = f"[analyzing {_chrom}]"
oeMat, N = processCoolFile(coolfile, _chrom)
start_point = -(image - center_size) // 2
joffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[np.newaxis, :], image, axis=0)
ioffset = np.repeat(np.linspace(0, image, image, endpoint=False, dtype=int)[:, np.newaxis], image, axis=1)
data, i_list, j_list = [], [], []
for i in range(start_point, N - image - start_point, center_size):
for j in range(0, max_distance_bin, center_size):
jj = j + i
# if jj + w <= N and i + w <= N:
_oeMat = getLocal(oeMat, i, jj, image, N)
if np.sum(_oeMat == 0) <= (image*image*0.9):
data.append(_oeMat)
i_list.append(i + ioffset)
j_list.append(jj + joffset)
while len(data) >= batchsize or (i + center_size > N - image - start_point and len(data) > 0):
bin_i = torch.tensor(np.stack(i_list[:batchsize], axis=0)).to(device)
bin_j = torch.tensor(np.stack(j_list[:batchsize], axis=0)).to(device)
targetX = torch.tensor(np.stack(data[:batchsize], axis=0)).to(device)
bin_i = bin_i*resol
bin_j = bin_j*resol
data = data[batchsize:]
i_list = i_list[batchsize:]
j_list = j_list[batchsize:]
print(targetX.shape)
print(bin_i.shape)
print(bin_j.shape)
with torch.no_grad():
with autocast():
pred = torch.sigmoid(model(targetX.float().to(device)))[slice_obj_pred].flatten()
loop = torch.nonzero(pred>0.5).flatten().cpu()
prob = pred[loop].cpu().numpy().flatten().tolist()
frag1 = bin_i[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
frag2 = bin_j[slice_obj_coord].flatten().cpu().numpy()[loop].flatten().tolist()
loopwriter.write(_chrom,frag1,frag2,prob)
if __name__ == '__main__':
dev()