rorschach-40 commited on
Commit
afe7cf8
1 Parent(s): 1f43269

End of training

Browse files
Files changed (1) hide show
  1. README.md +15 -3
README.md CHANGED
@@ -3,6 +3,10 @@ license: apache-2.0
3
  base_model: google/flan-t5-large
4
  tags:
5
  - generated_from_trainer
 
 
 
 
6
  model-index:
7
  - name: flan-t5-large-batch_1-text-classification
8
  results: []
@@ -14,6 +18,11 @@ should probably proofread and complete it, then remove this comment. -->
14
  # flan-t5-large-batch_1-text-classification
15
 
16
  This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
 
 
 
 
 
17
 
18
  ## Model description
19
 
@@ -33,15 +42,18 @@ More information needed
33
 
34
  The following hyperparameters were used during training:
35
  - learning_rate: 0.0003
36
- - train_batch_size: 5
37
- - eval_batch_size: 5
38
  - seed: 42
39
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
40
  - lr_scheduler_type: linear
41
- - num_epochs: 4
42
 
43
  ### Training results
44
 
 
 
 
45
 
46
 
47
  ### Framework versions
 
3
  base_model: google/flan-t5-large
4
  tags:
5
  - generated_from_trainer
6
+ metrics:
7
+ - precision
8
+ - recall
9
+ - f1
10
  model-index:
11
  - name: flan-t5-large-batch_1-text-classification
12
  results: []
 
18
  # flan-t5-large-batch_1-text-classification
19
 
20
  This model is a fine-tuned version of [google/flan-t5-large](https://huggingface.co/google/flan-t5-large) on the None dataset.
21
+ It achieves the following results on the evaluation set:
22
+ - Loss: 0.3435
23
+ - Precision: 0.8391
24
+ - Recall: 0.9730
25
+ - F1: 0.9011
26
 
27
  ## Model description
28
 
 
42
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 0.0003
45
+ - train_batch_size: 10
46
+ - eval_batch_size: 10
47
  - seed: 42
48
  - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
49
  - lr_scheduler_type: linear
50
+ - num_epochs: 1
51
 
52
  ### Training results
53
 
54
+ | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 |
55
+ |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|
56
+ | 0.4053 | 1.0 | 234 | 0.3435 | 0.8391 | 0.9730 | 0.9011 |
57
 
58
 
59
  ### Framework versions