rootacess commited on
Commit
3f0b955
1 Parent(s): 0989dd7

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +63 -0
README.md ADDED
@@ -0,0 +1,63 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ tags:
4
+ - generated_from_trainer
5
+ metrics:
6
+ - accuracy
7
+ - f1
8
+ model-index:
9
+ - name: distilbert-base-uncased-finetuned-mathQA
10
+ results: []
11
+ ---
12
+
13
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
14
+ should probably proofread and complete it, then remove this comment. -->
15
+
16
+ # distilbert-base-uncased-finetuned-mathQA
17
+
18
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the None dataset.
19
+ It achieves the following results on the evaluation set:
20
+ - Loss: 0.0752
21
+ - Accuracy: 0.9857
22
+ - F1: 0.9857
23
+
24
+ ## Model description
25
+
26
+ More information needed
27
+
28
+ ## Intended uses & limitations
29
+
30
+ More information needed
31
+
32
+ ## Training and evaluation data
33
+
34
+ More information needed
35
+
36
+ ## Training procedure
37
+
38
+ ### Training hyperparameters
39
+
40
+ The following hyperparameters were used during training:
41
+ - learning_rate: 2e-05
42
+ - train_batch_size: 16
43
+ - eval_batch_size: 16
44
+ - seed: 42
45
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
46
+ - lr_scheduler_type: linear
47
+ - num_epochs: 3
48
+
49
+ ### Training results
50
+
51
+ | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 |
52
+ |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|
53
+ | 0.3155 | 1.0 | 1865 | 0.0997 | 0.9727 | 0.9727 |
54
+ | 0.0726 | 2.0 | 3730 | 0.0813 | 0.9826 | 0.9825 |
55
+ | 0.0292 | 3.0 | 5595 | 0.0752 | 0.9857 | 0.9857 |
56
+
57
+
58
+ ### Framework versions
59
+
60
+ - Transformers 4.26.1
61
+ - Pytorch 1.13.1+cu116
62
+ - Datasets 2.10.1
63
+ - Tokenizers 0.13.2