update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
datasets:
|
5 |
+
- sroie
|
6 |
+
metrics:
|
7 |
+
- precision
|
8 |
+
- recall
|
9 |
+
- f1
|
10 |
+
- accuracy
|
11 |
+
model-index:
|
12 |
+
- name: layoutlmv3-finetuned-invoice
|
13 |
+
results:
|
14 |
+
- task:
|
15 |
+
name: Token Classification
|
16 |
+
type: token-classification
|
17 |
+
dataset:
|
18 |
+
name: sroie
|
19 |
+
type: sroie
|
20 |
+
args: sroie
|
21 |
+
metrics:
|
22 |
+
- name: Precision
|
23 |
+
type: precision
|
24 |
+
value: 1.0
|
25 |
+
- name: Recall
|
26 |
+
type: recall
|
27 |
+
value: 0.9979716024340771
|
28 |
+
- name: F1
|
29 |
+
type: f1
|
30 |
+
value: 0.9989847715736041
|
31 |
+
- name: Accuracy
|
32 |
+
type: accuracy
|
33 |
+
value: 0.9997893406361913
|
34 |
+
---
|
35 |
+
|
36 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
37 |
+
should probably proofread and complete it, then remove this comment. -->
|
38 |
+
|
39 |
+
# layoutlmv3-finetuned-invoice
|
40 |
+
|
41 |
+
This model is a fine-tuned version of [microsoft/layoutlmv3-base](https://huggingface.co/microsoft/layoutlmv3-base) on the sroie dataset.
|
42 |
+
It achieves the following results on the evaluation set:
|
43 |
+
- Loss: 0.0030
|
44 |
+
- Precision: 1.0
|
45 |
+
- Recall: 0.9980
|
46 |
+
- F1: 0.9990
|
47 |
+
- Accuracy: 0.9998
|
48 |
+
|
49 |
+
## Model description
|
50 |
+
|
51 |
+
More information needed
|
52 |
+
|
53 |
+
## Intended uses & limitations
|
54 |
+
|
55 |
+
More information needed
|
56 |
+
|
57 |
+
## Training and evaluation data
|
58 |
+
|
59 |
+
More information needed
|
60 |
+
|
61 |
+
## Training procedure
|
62 |
+
|
63 |
+
### Training hyperparameters
|
64 |
+
|
65 |
+
The following hyperparameters were used during training:
|
66 |
+
- learning_rate: 1e-05
|
67 |
+
- train_batch_size: 2
|
68 |
+
- eval_batch_size: 2
|
69 |
+
- seed: 42
|
70 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
71 |
+
- lr_scheduler_type: linear
|
72 |
+
- training_steps: 2000
|
73 |
+
|
74 |
+
### Training results
|
75 |
+
|
76 |
+
| Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
|
77 |
+
|:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
|
78 |
+
| No log | 2.0 | 100 | 0.0715 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
79 |
+
| No log | 4.0 | 200 | 0.0228 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
80 |
+
| No log | 6.0 | 300 | 0.0174 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
81 |
+
| No log | 8.0 | 400 | 0.0137 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
82 |
+
| 0.1189 | 10.0 | 500 | 0.0122 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
83 |
+
| 0.1189 | 12.0 | 600 | 0.0112 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
84 |
+
| 0.1189 | 14.0 | 700 | 0.0080 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
85 |
+
| 0.1189 | 16.0 | 800 | 0.0100 | 0.972 | 0.9858 | 0.9789 | 0.9971 |
|
86 |
+
| 0.1189 | 18.0 | 900 | 0.0040 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
87 |
+
| 0.0097 | 20.0 | 1000 | 0.0030 | 1.0 | 0.9980 | 0.9990 | 0.9998 |
|
88 |
+
| 0.0097 | 22.0 | 1100 | 0.0028 | 0.9980 | 0.9959 | 0.9970 | 0.9996 |
|
89 |
+
| 0.0097 | 24.0 | 1200 | 0.0016 | 1.0 | 1.0 | 1.0 | 1.0 |
|
90 |
+
| 0.0097 | 26.0 | 1300 | 0.0015 | 1.0 | 1.0 | 1.0 | 1.0 |
|
91 |
+
| 0.0097 | 28.0 | 1400 | 0.0015 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
|
92 |
+
| 0.0029 | 30.0 | 1500 | 0.0017 | 0.9980 | 0.9980 | 0.9980 | 0.9998 |
|
93 |
+
| 0.0029 | 32.0 | 1600 | 0.0026 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
94 |
+
| 0.0029 | 34.0 | 1700 | 0.0026 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
95 |
+
| 0.0029 | 36.0 | 1800 | 0.0026 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
96 |
+
| 0.0029 | 38.0 | 1900 | 0.0025 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
97 |
+
| 0.002 | 40.0 | 2000 | 0.0026 | 0.9960 | 0.9980 | 0.9970 | 0.9996 |
|
98 |
+
|
99 |
+
|
100 |
+
### Framework versions
|
101 |
+
|
102 |
+
- Transformers 4.20.0.dev0
|
103 |
+
- Pytorch 1.11.0+cu113
|
104 |
+
- Datasets 2.2.2
|
105 |
+
- Tokenizers 0.12.1
|