rollerhafeezh-amikom commited on
Commit
7cf713e
1 Parent(s): 6592fa6

Training complete

Browse files
Files changed (1) hide show
  1. README.md +11 -35
README.md CHANGED
@@ -3,8 +3,6 @@ license: mit
3
  base_model: xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
6
- datasets:
7
- - id_nergrit_corpus
8
  metrics:
9
  - precision
10
  - recall
@@ -12,29 +10,7 @@ metrics:
12
  - accuracy
13
  model-index:
14
  - name: xlm-roberta-base-ner-silvanus
15
- results:
16
- - task:
17
- name: Token Classification
18
- type: token-classification
19
- dataset:
20
- name: id_nergrit_corpus
21
- type: id_nergrit_corpus
22
- config: ner
23
- split: validation
24
- args: ner
25
- metrics:
26
- - name: Precision
27
- type: precision
28
- value: 0.9034110097939885
29
- - name: Recall
30
- type: recall
31
- value: 0.9021922428330523
32
- - name: F1
33
- type: f1
34
- value: 0.9028012149848127
35
- - name: Accuracy
36
- type: accuracy
37
- value: 0.989266717325228
38
  ---
39
 
40
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
@@ -42,13 +18,13 @@ should probably proofread and complete it, then remove this comment. -->
42
 
43
  # xlm-roberta-base-ner-silvanus
44
 
45
- This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the id_nergrit_corpus dataset.
46
  It achieves the following results on the evaluation set:
47
- - Loss: 0.0648
48
- - Precision: 0.9034
49
- - Recall: 0.9022
50
- - F1: 0.9028
51
- - Accuracy: 0.9893
52
 
53
  ## Model description
54
 
@@ -67,7 +43,7 @@ More information needed
67
  ### Training hyperparameters
68
 
69
  The following hyperparameters were used during training:
70
- - learning_rate: 1e-05
71
  - train_batch_size: 8
72
  - eval_batch_size: 8
73
  - seed: 42
@@ -79,9 +55,9 @@ The following hyperparameters were used during training:
79
 
80
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
81
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
82
- | 0.007 | 1.0 | 1567 | 0.0606 | 0.9110 | 0.8911 | 0.9009 | 0.9890 |
83
- | 0.0052 | 2.0 | 3134 | 0.0634 | 0.9066 | 0.8968 | 0.9017 | 0.9895 |
84
- | 0.0053 | 3.0 | 4701 | 0.0648 | 0.9034 | 0.9022 | 0.9028 | 0.9893 |
85
 
86
 
87
  ### Framework versions
 
3
  base_model: xlm-roberta-base
4
  tags:
5
  - generated_from_trainer
 
 
6
  metrics:
7
  - precision
8
  - recall
 
10
  - accuracy
11
  model-index:
12
  - name: xlm-roberta-base-ner-silvanus
13
+ results: []
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
14
  ---
15
 
16
  <!-- This model card has been generated automatically according to the information the Trainer had access to. You
 
18
 
19
  # xlm-roberta-base-ner-silvanus
20
 
21
+ This model is a fine-tuned version of [xlm-roberta-base](https://huggingface.co/xlm-roberta-base) on the None dataset.
22
  It achieves the following results on the evaluation set:
23
+ - Loss: 0.0636
24
+ - Precision: 0.9101
25
+ - Recall: 0.9157
26
+ - F1: 0.9129
27
+ - Accuracy: 0.9853
28
 
29
  ## Model description
30
 
 
43
  ### Training hyperparameters
44
 
45
  The following hyperparameters were used during training:
46
+ - learning_rate: 3e-05
47
  - train_batch_size: 8
48
  - eval_batch_size: 8
49
  - seed: 42
 
55
 
56
  | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy |
57
  |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:|
58
+ | 0.1477 | 1.0 | 827 | 0.0558 | 0.8977 | 0.8826 | 0.8901 | 0.9837 |
59
+ | 0.0465 | 2.0 | 1654 | 0.0590 | 0.9010 | 0.9032 | 0.9021 | 0.9842 |
60
+ | 0.03 | 3.0 | 2481 | 0.0636 | 0.9101 | 0.9157 | 0.9129 | 0.9853 |
61
 
62
 
63
  ### Framework versions