rohitp1 commited on
Commit
bd4ed1b
1 Parent(s): 2fb4fb2

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +71 -0
README.md ADDED
@@ -0,0 +1,71 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - generated_from_trainer
4
+ metrics:
5
+ - wer
6
+ model-index:
7
+ - name: libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse-take-3
8
+ results: []
9
+ ---
10
+
11
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
12
+ should probably proofread and complete it, then remove this comment. -->
13
+
14
+ # libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse-take-3
15
+
16
+ This model is a fine-tuned version of [rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse](https://huggingface.co/rohitp1/libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-mse) on the None dataset.
17
+ It achieves the following results on the evaluation set:
18
+ - Loss: 28.9263
19
+ - Wer: 0.3301
20
+
21
+ ## Model description
22
+
23
+ More information needed
24
+
25
+ ## Intended uses & limitations
26
+
27
+ More information needed
28
+
29
+ ## Training and evaluation data
30
+
31
+ More information needed
32
+
33
+ ## Training procedure
34
+
35
+ ### Training hyperparameters
36
+
37
+ The following hyperparameters were used during training:
38
+ - learning_rate: 0.0005
39
+ - train_batch_size: 4
40
+ - eval_batch_size: 1
41
+ - seed: 42
42
+ - gradient_accumulation_steps: 2
43
+ - total_train_batch_size: 8
44
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
45
+ - lr_scheduler_type: linear
46
+ - lr_scheduler_warmup_ratio: 0.2
47
+ - num_epochs: 40
48
+ - mixed_precision_training: Native AMP
49
+
50
+ ### Training results
51
+
52
+ | Training Loss | Epoch | Step | Validation Loss | Wer |
53
+ |:-------------:|:-----:|:----:|:---------------:|:------:|
54
+ | 291.1088 | 0.22 | 400 | 28.4207 | 0.3362 |
55
+ | 284.1968 | 0.45 | 800 | 28.1458 | 0.3314 |
56
+ | 288.1414 | 0.67 | 1200 | 28.1397 | 0.3326 |
57
+ | 290.0272 | 0.9 | 1600 | 28.4186 | 0.3323 |
58
+ | 287.3224 | 1.12 | 2000 | 28.3548 | 0.3283 |
59
+ | 279.1482 | 1.35 | 2400 | 28.5373 | 0.3309 |
60
+ | 285.8217 | 1.57 | 2800 | 28.4447 | 0.3301 |
61
+ | 282.9265 | 1.79 | 3200 | 28.5379 | 0.3365 |
62
+ | 292.6254 | 2.02 | 3600 | 28.2632 | 0.3299 |
63
+ | 279.215 | 2.24 | 4000 | 28.9263 | 0.3301 |
64
+
65
+
66
+ ### Framework versions
67
+
68
+ - Transformers 4.24.0
69
+ - Pytorch 1.12.1
70
+ - Datasets 2.7.1
71
+ - Tokenizers 0.11.0