update model card README.md
Browse files
README.md
ADDED
@@ -0,0 +1,72 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
tags:
|
3 |
+
- generated_from_trainer
|
4 |
+
metrics:
|
5 |
+
- wer
|
6 |
+
model-index:
|
7 |
+
- name: libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att
|
8 |
+
results: []
|
9 |
+
---
|
10 |
+
|
11 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
12 |
+
should probably proofread and complete it, then remove this comment. -->
|
13 |
+
|
14 |
+
# libri-alpha-0.75-Temp-1-attention-3-layers-distil-with-6-layers-att
|
15 |
+
|
16 |
+
This model is a fine-tuned version of [](https://huggingface.co/) on the None dataset.
|
17 |
+
It achieves the following results on the evaluation set:
|
18 |
+
- Loss: 43.3741
|
19 |
+
- Wer: 0.4535
|
20 |
+
|
21 |
+
## Model description
|
22 |
+
|
23 |
+
More information needed
|
24 |
+
|
25 |
+
## Intended uses & limitations
|
26 |
+
|
27 |
+
More information needed
|
28 |
+
|
29 |
+
## Training and evaluation data
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Training procedure
|
34 |
+
|
35 |
+
### Training hyperparameters
|
36 |
+
|
37 |
+
The following hyperparameters were used during training:
|
38 |
+
- learning_rate: 0.002
|
39 |
+
- train_batch_size: 8
|
40 |
+
- eval_batch_size: 1
|
41 |
+
- seed: 42
|
42 |
+
- gradient_accumulation_steps: 2
|
43 |
+
- total_train_batch_size: 16
|
44 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
45 |
+
- lr_scheduler_type: linear
|
46 |
+
- lr_scheduler_warmup_ratio: 0.2
|
47 |
+
- num_epochs: 40
|
48 |
+
- mixed_precision_training: Native AMP
|
49 |
+
|
50 |
+
### Training results
|
51 |
+
|
52 |
+
| Training Loss | Epoch | Step | Validation Loss | Wer |
|
53 |
+
|:-------------:|:-----:|:----:|:---------------:|:------:|
|
54 |
+
| 1062.9452 | 0.45 | 400 | 45.3735 | 0.5247 |
|
55 |
+
| 938.9115 | 0.9 | 800 | 42.2431 | 0.4830 |
|
56 |
+
| 838.9108 | 1.35 | 1200 | 40.3582 | 0.4517 |
|
57 |
+
| 815.9835 | 1.79 | 1600 | 39.1145 | 0.4403 |
|
58 |
+
| 815.1952 | 2.24 | 2000 | 40.4637 | 0.4417 |
|
59 |
+
| 783.388 | 2.69 | 2400 | 39.3749 | 0.4312 |
|
60 |
+
| 786.6658 | 3.14 | 2800 | 41.7742 | 0.4450 |
|
61 |
+
| 785.0494 | 3.59 | 3200 | 42.3615 | 0.4562 |
|
62 |
+
| 808.8199 | 4.04 | 3600 | 43.4402 | 0.4527 |
|
63 |
+
| 765.5683 | 4.48 | 4000 | 43.2136 | 0.4505 |
|
64 |
+
| 803.3544 | 4.93 | 4400 | 43.3741 | 0.4535 |
|
65 |
+
|
66 |
+
|
67 |
+
### Framework versions
|
68 |
+
|
69 |
+
- Transformers 4.24.0
|
70 |
+
- Pytorch 1.12.1
|
71 |
+
- Datasets 2.7.1
|
72 |
+
- Tokenizers 0.11.0
|