|
import streamlit as st |
|
import numpy as np |
|
from PIL import Image |
|
from tensorflow.keras.models import load_model |
|
from tensorflow.keras.datasets import imdb |
|
from tensorflow.keras.preprocessing.sequence import pad_sequences |
|
import pickle |
|
|
|
|
|
word_to_index = imdb.get_word_index() |
|
|
|
|
|
def sentiment_classification(new_review_text, model): |
|
max_review_length = 500 |
|
new_review_tokens = [word_to_index.get(word, 0) for word in new_review_text.split()] |
|
new_review_tokens = pad_sequences([new_review_tokens], maxlen=max_review_length) |
|
prediction = model.predict(new_review_tokens) |
|
if type(prediction) == list: |
|
prediction = prediction[0] |
|
return "Positive" if prediction > 0.5 else "Negative" |
|
|
|
|
|
def tumor_detection(img, model): |
|
img = Image.open(img) |
|
img=img.resize((128,128)) |
|
img=np.array(img) |
|
input_img = np.expand_dims(img, axis=0) |
|
res = model.predict(input_img) |
|
return "Tumor Detected" if res else "No Tumor" |
|
|
|
|
|
st.title("Deep Prediction Hub") |
|
|
|
|
|
task = st.radio("Select Task", ("Sentiment Classification", "Tumor Detection")) |
|
|
|
if task == "Sentiment Classification": |
|
|
|
new_review_text = st.text_area("Enter a New Review:", value="") |
|
if st.button("Submit") and not new_review_text.strip(): |
|
st.warning("Please enter a review.") |
|
|
|
if new_review_text.strip(): |
|
st.subheader("Choose Model for Sentiment Classification") |
|
model_option = st.selectbox("Select Model", ("Perceptron", "Backpropagation", "DNN", "RNN", "LSTM")) |
|
|
|
|
|
if model_option == "Perceptron": |
|
with open('PP.pkl', 'rb') as file: |
|
model = pickle.load(file) |
|
elif model_option == "Backpropagation": |
|
with open('BP.pkl', 'rb') as file: |
|
model = pickle.load(file) |
|
elif model_option == "DNN": |
|
model = load_model('DP.keras') |
|
elif model_option == "RNN": |
|
model = load_model('RN.keras') |
|
elif model_option == "LSTM": |
|
model = load_model('LS.keras') |
|
|
|
if st.button("Classify Sentiment"): |
|
result = sentiment_classification(new_review_text, model) |
|
st.subheader("Sentiment Classification Result") |
|
st.write(f"**{result}**") |
|
|
|
elif task == "Tumor Detection": |
|
st.subheader("Tumor Detection") |
|
uploaded_file = st.file_uploader("Choose a tumor image...", type=["jpg", "jpeg", "png"]) |
|
|
|
if uploaded_file is not None: |
|
|
|
model = load_model('CN.keras') |
|
st.image(uploaded_file, caption="Uploaded Image.", use_column_width=False, width=200) |
|
st.write("") |
|
|
|
if st.button("Detect Tumor"): |
|
result = tumor_detection(uploaded_file, model) |
|
st.subheader("Tumor Detection Result") |
|
st.write(f"**{result}**") |
|
|