rohitdavas
commited on
Commit
•
7acb8ee
1
Parent(s):
9ebebb8
Initial commit
Browse files- README.md +1 -1
- a2c-PandaReachDense-v3.zip +2 -2
- a2c-PandaReachDense-v3/data +9 -9
- a2c-PandaReachDense-v3/policy.optimizer.pth +1 -1
- a2c-PandaReachDense-v3/policy.pth +1 -1
- config.json +1 -1
- replay.mp4 +0 -0
- results.json +1 -1
- vec_normalize.pkl +2 -2
README.md
CHANGED
@@ -16,7 +16,7 @@ model-index:
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
-
value: -0.
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
|
|
16 |
type: PandaReachDense-v3
|
17 |
metrics:
|
18 |
- type: mean_reward
|
19 |
+
value: -0.22 +/- 0.08
|
20 |
name: mean_reward
|
21 |
verified: false
|
22 |
---
|
a2c-PandaReachDense-v3.zip
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:aa61115a6dd2b7e274eb744fb988eedad4239cfa9d0b74ddb8df819dd10c21e2
|
3 |
+
size 106940
|
a2c-PandaReachDense-v3/data
CHANGED
@@ -24,25 +24,25 @@
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
-
"start_time":
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"_last_obs": {
|
31 |
":type:": "<class 'collections.OrderedDict'>",
|
32 |
-
":serialized:": "
|
33 |
-
"achieved_goal": "[[
|
34 |
-
"desired_goal": "[[
|
35 |
-
"observation": "[[
|
36 |
},
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
-
":serialized:": "
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'collections.OrderedDict'>",
|
43 |
-
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////
|
44 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
-
"desired_goal": "[[-0.
|
46 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
},
|
48 |
"_episode_num": 0,
|
@@ -52,7 +52,7 @@
|
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
-
":serialized:": "
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
|
|
24 |
"_num_timesteps_at_start": 0,
|
25 |
"seed": null,
|
26 |
"action_noise": null,
|
27 |
+
"start_time": 1696166906766913867,
|
28 |
"learning_rate": 0.0007,
|
29 |
"tensorboard_log": null,
|
30 |
"_last_obs": {
|
31 |
":type:": "<class 'collections.OrderedDict'>",
|
32 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoD3qPgr45L63ZEa94wOBPs9zh7uPPc8+3UbcvUhZ6D7I+mC+2m8Wv9Re5z4mbJw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAePGjPzbwwL6VOLu/ZK3Gv4ojlz4vl6e/tuIZv+zMkT97d32/nwaMv+terD9m8rk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgPeo+CvjkvrdkRr1DZfi89KqivzXQvb/jA4E+z3OHu489zz6Vv/Y+C2eeOi4NxD7dRty9SFnoPsj6YL4AXvW/8GPUPwlKsL/abxa/1F7nPiZsnD628km/bozVP/HtXj+UaA5LBEsGhpRoEnSUUpR1Lg==",
|
33 |
+
"achieved_goal": "[[ 0.4575014 -0.4472049 -0.04843589]\n [ 0.25198278 -0.00413368 0.40476653]\n [-0.10755704 0.45380616 -0.21970665]\n [-0.5876442 0.45189536 0.3055126 ]]",
|
34 |
+
"desired_goal": "[[ 1.2808065 -0.37683266 -1.4626642 ]\n [-1.5521665 0.29519302 -1.3093013 ]\n [-0.6011156 1.1390662 -0.9901044 ]\n [-1.0939521 1.3466467 1.4527099 ]]",
|
35 |
+
"observation": "[[ 4.57501411e-01 -4.47204888e-01 -4.84358929e-02 -3.03217229e-02\n -1.27084208e+00 -1.48291647e+00]\n [ 2.51982778e-01 -4.13367851e-03 4.04766530e-01 4.81930405e-01\n 1.20851526e-03 3.82913053e-01]\n [-1.07557036e-01 4.53806162e-01 -2.19706655e-01 -1.91693115e+00\n 1.65929985e+00 -1.37725937e+00]\n [-5.87644219e-01 4.51895356e-01 3.05512607e-01 -7.88859725e-01\n 1.66834807e+00 8.70818198e-01]]"
|
36 |
},
|
37 |
"_last_episode_starts": {
|
38 |
":type:": "<class 'numpy.ndarray'>",
|
39 |
+
":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="
|
40 |
},
|
41 |
"_last_original_obs": {
|
42 |
":type:": "<class 'collections.OrderedDict'>",
|
43 |
+
":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAP578vT8WTr3zA1U8DnfMPegj+z3ZTYo+9uroPVaK3r2fv5U+3gDLvSRorj2u72Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==",
|
44 |
"achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]",
|
45 |
+
"desired_goal": "[[-0.12334871 -0.05031418 0.01300143]\n [ 0.09983645 0.12262708 0.27012518]\n [ 0.1137294 -0.10866229 0.29247758]\n [-0.09912275 0.08515957 0.22357056]]",
|
46 |
"observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"
|
47 |
},
|
48 |
"_episode_num": 0,
|
|
|
52 |
"_stats_window_size": 100,
|
53 |
"ep_info_buffer": {
|
54 |
":type:": "<class 'collections.deque'>",
|
55 |
+
":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RSgoPTXreMAWyUSwOMAXSUR0CnhIfDk2gndX2UKGgGR7/MOPNmlImPaAdLA2gIR0CnhTTYEnstdX2UKGgGR7/Ypc5bQkX2aAdLBGgIR0CnhQBllK9PdX2UKGgGR7+S8BdUsFt9aAdLAWgIR0CnhToDPnjidX2UKGgGR7/ZoqkM1CPZaAdLBGgIR0CnhNJlBhQWdX2UKGgGR7+3pyIYWLxaaAdLAmgIR0CnhJTKcNH6dX2UKGgGR7+aa9bor4FiaAdLAWgIR0CnhNdeIEbHdX2UKGgGR7/S3ueBg/keaAdLA2gIR0CnhUhV+7UYdX2UKGgGR7/RrEcbR4QjaAdLBGgIR0CnhROjqOcUdX2UKGgGR7/SPQOWjXWfaAdLA2gIR0CnhOg00m+kdX2UKGgGR7/ZTTfBN21VaAdLBGgIR0CnhKqhDgIhdX2UKGgGR7+fCZWq94/vaAdLAWgIR0CnhK+sgdOqdX2UKGgGR7/My2x6fJ3gaAdLA2gIR0CnhVrKmsNldX2UKGgGR7/YXumaYu01aAdLBGgIR0CnhStDlYEGdX2UKGgGR7/KGgzxgAp8aAdLA2gIR0CnhPiQ1aW5dX2UKGgGR7/EwxFiKBNFaAdLAmgIR0CnhLr7XQMQdX2UKGgGR7/KN1hb4agmaAdLA2gIR0CnhWzuWrwOdX2UKGgGR7/EqpcX3xnWaAdLAmgIR0CnhThI4EOidX2UKGgGR7+3WNFSbYseaAdLAmgIR0CnhQWQGOdYdX2UKGgGR7/QQL/jsD4haAdLA2gIR0CnhM1MM7U5dX2UKGgGR7/AgX/HYHxCaAdLAmgIR0CnhXe3hGYsdX2UKGgGR7+xQ/HHWBjGaAdLAmgIR0CnhUMcIZ62dX2UKGgGR7+0fr8iwB5paAdLAmgIR0CnhRBuXNTtdX2UKGgGR7+nXAdn003waAdLAWgIR0CnhXz3IuGsdX2UKGgGR7+64axX4j8laAdLAmgIR0CnhNeTvAoHdX2UKGgGR7+ok3S8an76aAdLAWgIR0CnhN8UM5OrdX2UKGgGR7/M5tm+TNdJaAdLA2gIR0CnhVjfvWpZdX2UKGgGR7/DIFvAGjbjaAdLA2gIR0CnhSYt6HCXdX2UKGgGR7/QghbGFSKnaAdLA2gIR0CnhZLL6k6+dX2UKGgGR7/Hlum78Nx3aAdLA2gIR0CnhPHCXQdCdX2UKGgGR7/Dv2oNutOmaAdLAmgIR0CnhZwEyLyddX2UKGgGR7/SBjnV5KODaAdLA2gIR0CnhWdVWCEpdX2UKGgGR7/NSro4dZJTaAdLA2gIR0CnhTSzXz19dX2UKGgGR7+zt+kP+XJHaAdLAmgIR0CnhPugpSaWdX2UKGgGR7+0fq5byH2zaAdLAmgIR0CnhXOCPIXCdX2UKGgGR7/KBEroW56MaAdLA2gIR0CnhUVMuez2dX2UKGgGR7/b98Z1mrbQaAdLBGgIR0CnhbHlwLmZdX2UKGgGR7+3cQAdXDFZaAdLAmgIR0CnhX09ZA6ddX2UKGgGR7/Ysq8UVSGbaAdLBGgIR0CnhRHIIWxhdX2UKGgGR7+yHLzPKMefaAdLAmgIR0CnhbwbEP1+dX2UKGgGR7/PRfnfVI7OaAdLA2gIR0CnhVSS3b22dX2UKGgGR7+UqUeMhougaAdLAWgIR0CnhRbz9S/CdX2UKGgGR7/PiKBNEgGKaAdLA2gIR0CnhY7cfvF4dX2UKGgGR7+79P1tfoicaAdLAmgIR0CnhciHZbpvdX2UKGgGR7/N1aGHpKSQaAdLA2gIR0CnhWWMsH0LdX2UKGgGR7/WQLux8lXzaAdLA2gIR0CnhSf7BO58dX2UKGgGR7/DCVrylN1yaAdLAmgIR0CnhdKqXF98dX2UKGgGR7/MqUeMhougaAdLA2gIR0CnhZ4IjW07dX2UKGgGR7/CClrM1TBJaAdLAmgIR0CnhXBW5paidX2UKGgGR7+zQD3dsSCfaAdLAmgIR0Cnhaqf4AS4dX2UKGgGR7/Q6z3RG+bmaAdLA2gIR0CnhToqslsxdX2UKGgGR7/QSM98qnWKaAdLA2gIR0CnheSRbKRudX2UKGgGR7+6B4D9wWFfaAdLAmgIR0CnhbRfOUt7dX2UKGgGR7/aQgs9SuQqaAdLBGgIR0CnhYawdKdydX2UKGgGR7/QZhKDkELZaAdLA2gIR0CnhUkit7rtdX2UKGgGR7/NECNjslcAaAdLA2gIR0CnhfNz8xbjdX2UKGgGR7/WwqiGnGbTaAdLA2gIR0CnhcWhRIjGdX2UKGgGR7+7dyksSTQmaAdLAmgIR0CnhVUjLSuydX2UKGgGR7/KIRAbADaHaAdLA2gIR0CnhZe5Fw1jdX2UKGgGR7/Qnqmj0tiAaAdLA2gIR0CnhgQ+MZP3dX2UKGgGR7+nMwDeTFERaAdLAWgIR0CnhZyro4dZdX2UKGgGR7/SwIt16mfoaAdLBGgIR0Cnhdjyvs7ddX2UKGgGR7/S/SH/LkjpaAdLBGgIR0CnhWhq9GqhdX2UKGgGR7/KF6iTMaCMaAdLA2gIR0Cnha2St/4JdX2UKGgGR7/bbPQfIS13aAdLBGgIR0CnhhoJiRW+dX2UKGgGR7/Pmhdt2s7uaAdLA2gIR0Cnhep++dsjdX2UKGgGR7/CPgeii7CjaAdLAmgIR0CnhbfIKc/ddX2UKGgGR7/Qff4yoGY8aAdLA2gIR0CnhXo3BHkMdX2UKGgGR7+6rIYFaB7NaAdLAmgIR0CnhiSeAd4ndX2UKGgGR7/CkC3gDRtxaAdLAmgIR0CnhcGZVn27dX2UKGgGR7+6svIwM6RyaAdLAmgIR0CnhjE3S8aodX2UKGgGR7/QVUMoc7yQaAdLA2gIR0CnhfzXarWAdX2UKGgGR7/KjW07bL2YaAdLA2gIR0CnhYycbzbwdX2UKGgGR7/Vcjqv/zasaAdLA2gIR0CnhdQ1rIo3dX2UKGgGR7+6dWhh6SkkaAdLAmgIR0CnhZaoMrmRdX2UKGgGR7/Sjx0+1SflaAdLA2gIR0CnhgwtJ4B4dX2UKGgGR7/WcbzbvgFYaAdLBGgIR0CnhkWmHgxbdX2UKGgGR7+BjSXt0FKTaAdLAWgIR0CnhkzeXRgJdX2UKGgGR7/TUVzp5eJIaAdLA2gIR0CnheVMmF8HdX2UKGgGR7/RFZgXuVopaAdLA2gIR0Cnhae6iCardX2UKGgGR7/PfD1oQFs6aAdLA2gIR0Cnhh1zp5eJdX2UKGgGR7/Ps9jgAIY4aAdLA2gIR0Cnhlvc8DB/dX2UKGgGR7/DlXA/LTx5aAdLAmgIR0Cnhicv24/edX2UKGgGR7/TeRgZ0jkdaAdLA2gIR0CnhbdGRV6vdX2UKGgGR7/WoXKr7wazaAdLBGgIR0Cnhfp5/smfdX2UKGgGR7+W4ZuQ6p5vaAdLAWgIR0CnhbzcAR02dX2UKGgGR7/JHggow22oaAdLA2gIR0Cnhm7f51vEdX2UKGgGR7/Q/lyR0U48aAdLA2gIR0Cnhjo1tO2zdX2UKGgGR7/T3evZAY51aAdLA2gIR0Cnhc87IT4+dX2UKGgGR7/aoOQQtjCpaAdLBGgIR0CnhhJjDsMRdX2UKGgGR7/Rb0voNd7faAdLA2gIR0Cnhn8IJJGwdX2UKGgGR7/IyFfzBhx6aAdLA2gIR0CnhkqLjxTbdX2UKGgGR7+YmkWRA8jiaAdLAWgIR0CnhhfgaWHDdX2UKGgGR7/RxfOUt7KJaAdLA2gIR0CnheFEiMYNdX2UKGgGR7+29zwMH8jzaAdLAmgIR0CnhiPQfIS2dX2UKGgGR7/LzBhx5s0paAdLA2gIR0CnhlvRRdhRdX2UKGgGR7/Vk56t1ZDBaAdLBGgIR0CnhpX7DVH4dX2UKGgGR7/CvGp++dsjaAdLAmgIR0Cnhi5xaPjodX2UKGgGR7/PEaVD8cdYaAdLA2gIR0CnhfD0Dlo2dX2UKGgGR7/Au8K5TZQIaAdLAmgIR0CnhmaVt4zKdWUu"
|
56 |
},
|
57 |
"ep_success_buffer": {
|
58 |
":type:": "<class 'collections.deque'>",
|
a2c-PandaReachDense-v3/policy.optimizer.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 44734
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:89def53bfa92c20f4cdcead9a6765390942a648509af81cca94fde7154d72312
|
3 |
size 44734
|
a2c-PandaReachDense-v3/policy.pth
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
size 46014
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f6a36446186c3a06c2c100793e0b3407c77115436b85b4775bea3d188bf750d8
|
3 |
size 46014
|
config.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fea58ed65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fea58ed1c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696163144615079079, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVL6EPmPIrbnhseQ+bjYPv7k6475Q+LE+t7mqv+pDpL86rou/VL6EPmPIrbnhseQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA97Z0PwemtD/FZz2/8itXvrgIj7/nj1s/HZqCv1jEx7/6kJg9H+VRP70apr8GinO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUvoQ+Y8itueGx5D5kK/g+lsqguvCOxj5uNg+/uTrjvlD4sT45oVS/X6nOv4LCZT+3uaq/6kOkvzqui78qMIC/ufhqv/PwVL5UvoQ+Y8itueGx5D5kK/g+lsqguvCOxj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 2.5926459e-01 -3.3146431e-04 4.4666961e-01]\n [-5.5942428e-01 -4.4380739e-01 3.4759760e-01]\n [-1.3337926e+00 -1.2833226e+00 -1.0912545e+00]\n [ 2.5926459e-01 -3.3146431e-04 4.4666961e-01]]", "desired_goal": "[[ 0.9559168 1.4113168 -0.73986465]\n [-0.21012858 -1.1174536 0.8576645 ]\n [-1.0203282 -1.5606794 0.07449527]\n [ 0.81990236 -1.297691 -0.9513248 ]]", "observation": "[[ 2.5926459e-01 -3.3146431e-04 4.4666961e-01 4.8470604e-01\n -1.2267407e-03 3.8780928e-01]\n [-5.5942428e-01 -4.4380739e-01 3.4759760e-01 -8.3058506e-01\n -1.6145438e+00 8.9749920e-01]\n [-1.3337926e+00 -1.2833226e+00 -1.0912545e+00 -1.0014699e+00\n -9.1785771e-01 -2.0795040e-01]\n [ 2.5926459e-01 -3.3146431e-04 4.4666961e-01 4.8470604e-01\n -1.2267407e-03 3.8780928e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaiO4vaD8Pr1gqnI99arnvXxoCr6ESyg+OUEKPklaBz0tQjg+QNO9PZRkq712tOE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0899113 -0.04662764 0.05924451]\n [-0.11311904 -0.1351642 0.16435057]\n [ 0.13501443 0.03304509 0.17993994]\n [ 0.09268808 -0.08368793 0.02755187]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6B7NSqEOAmMAWyUSwGMAXSUR0CrBrVB2OhkdX2UKGgGR7/ZbA1vVEuyaAdLBGgIR0CrB4AHVwxWdX2UKGgGR7/ByVfNRm9QaAdLAmgIR0CrByCbDuSfdX2UKGgGR7+5hx5s0pEyaAdLAmgIR0CrBsAOavzOdX2UKGgGR7/S00m+j/MoaAdLA2gIR0CrBl98zAN5dX2UKGgGR7/SBcAzYVZcaAdLA2gIR0CrB5JrULDydX2UKGgGR7+5MYdhiLEUaAdLAmgIR0CrBs1IZqEfdX2UKGgGR7+8bm2b5M11aAdLAmgIR0CrBmyyMUAUdX2UKGgGR7/QFcIJJGvwaAdLA2gIR0CrBzMJY1YRdX2UKGgGR7+xgH/tIClraAdLAmgIR0CrBtbK7qY7dX2UKGgGR7/CvpyIYWLxaAdLAmgIR0CrBnY/3WWhdX2UKGgGR7/SF0PpY9xIaAdLA2gIR0CrB6KQA+6idX2UKGgGR7/SixVyWAwxaAdLA2gIR0CrB0KvmozfdX2UKGgGR7/QBeokzGgjaAdLA2gIR0CrBulglWwNdX2UKGgGR7/JBzFMqSX/aAdLA2gIR0CrBojdP+GXdX2UKGgGR7/Jx82Jiy6daAdLA2gIR0CrB7QR5C4SdX2UKGgGR7/MCCjDbah6aAdLA2gIR0CrB1RdyDIzdX2UKGgGR7/OI42jwhGIaAdLA2gIR0CrBpgvDgqFdX2UKGgGR7/JHd43WFviaAdLA2gIR0CrB8MrEtNBdX2UKGgGR7/Bqkdmxt52aAdLAmgIR0CrB1690zTGdX2UKGgGR7/Xmp2ll9SdaAdLBGgIR0CrBv5h8YygdX2UKGgGR7/ELcbiqABlaAdLAmgIR0CrB88yFfzCdX2UKGgGR7+87zTWoWHlaAdLAmgIR0CrBwn3UQTVdX2UKGgGR7/S7MPjGT9saAdLA2gIR0CrBqnB+F10dX2UKGgGR7/Xst03fhuPaAdLBGgIR0CrB3VTisGQdX2UKGgGR7/MrQw9JSR9aAdLA2gIR0CrBxnrpqyodX2UKGgGR7/Rqaw2VE/jaAdLA2gIR0CrBrlolD4QdX2UKGgGR7/UPdEb5uZUaAdLBGgIR0CrB+clPacqdX2UKGgGR7+/LDAJswcpaAdLAmgIR0CrB4KY7aIvdX2UKGgGR7+z7O3UhFEzaAdLAmgIR0CrByakIomYdX2UKGgGR7/AP4EfT1CgaAdLAmgIR0CrBsYOc2BKdX2UKGgGR7/PIFvAGjbjaAdLA2gIR0CrB/Yb83uNdX2UKGgGR7/R7jDKoybhaAdLA2gIR0CrB5GYrrgPdX2UKGgGR7+yc+aBqbjMaAdLAmgIR0CrBzEVN5+pdX2UKGgGR7/YIcinpB5YaAdLBGgIR0CrBtwJgLJCdX2UKGgGR7/UJlar3j+8aAdLA2gIR0CrCAbgjyFxdX2UKGgGR7/GibDuSfUXaAdLA2gIR0CrB6JpnHvMdX2UKGgGR7+nljmSyMUAaAdLAWgIR0CrCAvXkHUudX2UKGgGR7+lYp2ECeVcaAdLAWgIR0CrB6dPLxI8dX2UKGgGR7/gSVW0Z3s5aAdLBWgIR0CrB02tuDSPdX2UKGgGR7/Llz2exwAEaAdLA2gIR0CrBu2K/EfldX2UKGgGR7+1YB/7SApbaAdLAmgIR0CrCBiSaEzwdX2UKGgGR7+Sq2jO9nK5aAdLAWgIR0CrB1Npudf+dX2UKGgGR7/SIiC8OCoTaAdLA2gIR0CrB7szEaVEdX2UKGgGR7/MAoXsPatcaAdLA2gIR0CrBv71RLsbdX2UKGgGR7/T9K28Zk08aAdLA2gIR0CrCCnhsImgdX2UKGgGR7/A8AaNuLrHaAdLAmgIR0CrB8VhTfixdX2UKGgGR7/SqveP7vXtaAdLA2gIR0CrB2TYEnstdX2UKGgGR7+75pJwsGxEaAdLAmgIR0CrBwiHh0hedX2UKGgGR7/DQjUutfXxaAdLAmgIR0CrB86uwHJLdX2UKGgGR7/S+qioKlYVaAdLA2gIR0CrCDpg1FYudX2UKGgGR7/UQSi/O+qSaAdLA2gIR0CrB3UuUUwjdX2UKGgGR7+8SYgJTl1baAdLAmgIR0CrBxUmdAgQdX2UKGgGR7+3DO1OTJQtaAdLAmgIR0CrCETGYKIBdX2UKGgGR7/YahHskY4yaAdLBGgIR0CrB+Tc6/7BdX2UKGgGR7/TeokzGgjAaAdLA2gIR0CrByOeBg/kdX2UKGgGR7+4TAWSEDhcaAdLAmgIR0CrCE57PY4AdX2UKGgGR7/ZadMCcPOIaAdLBWgIR0CrB5ASeyzHdX2UKGgGR7/V2zv7WNFSaAdLA2gIR0CrB/XU6PsBdX2UKGgGR7/KnSfDk2gnaAdLA2gIR0CrBzSWRigCdX2UKGgGR7/Wg+yJKraNaAdLBGgIR0CrCGRRl6JJdX2UKGgGR7+/jjrAxi5NaAdLAmgIR0CrB//grH2idX2UKGgGR7/QKr7wazeGaAdLA2gIR0CrB59ph4MXdX2UKGgGR7/GQcxTKkmAaAdLAmgIR0CrBz8NhE0BdX2UKGgGR7+7FdcB2fTTaAdLAmgIR0CrCHEYO2AodX2UKGgGR7/BrnDBMzuXaAdLAmgIR0CrCAzJQtSRdX2UKGgGR7/QH58BuGbkaAdLA2gIR0CrB7IoNNJwdX2UKGgGR7+9IvrWy1NQaAdLAmgIR0CrCBfGdZq3dX2UKGgGR7/XTRYzSCvpaAdLBGgIR0CrB1bs4T9LdX2UKGgGR7/XR/EwWWQfaAdLBGgIR0CrCIadc0LudX2UKGgGR7/L6lchTwUhaAdLA2gIR0CrB8G7z06HdX2UKGgGR7/ByzXz19ORaAdLAmgIR0CrB2E6cRUWdX2UKGgGR7/GXm/336AOaAdLA2gIR0CrCCpW/8EWdX2UKGgGR7/Nu0CzTnaGaAdLA2gIR0CrCJjDKoycdX2UKGgGR7/PwtJ4B3iaaAdLA2gIR0CrB3LZrYXgdX2UKGgGR7+1j6N2ki2VaAdLAmgIR0CrCKIo3JgcdX2UKGgGR7/etx+8XenAaAdLBGgIR0CrCD2mpEQYdX2UKGgGR7/W9tMwlByCaAdLBWgIR0CrB90/GEPEdX2UKGgGR7/NVktmL9/CaAdLA2gIR0CrB4QP7N0OdX2UKGgGR7/Qgs9SuQp4aAdLA2gIR0CrCLOGCZnddX2UKGgGR7/KpeeFtbcHaAdLA2gIR0CrCE8WsRxtdX2UKGgGR7/SnGsFMZgpaAdLA2gIR0CrB+6ab4JvdX2UKGgGR7/U4y44Ia99aAdLA2gIR0CrB5LSE12rdX2UKGgGR7/LCP6sQumKaAdLA2gIR0CrCMSwW3z+dX2UKGgGR7/VG0/nnuAqaAdLA2gIR0CrCGA3cYZVdX2UKGgGR7/R3solUp/gaAdLA2gIR0CrB//1pTMrdX2UKGgGR7+E7bL2YfGNaAdLAWgIR0CrCASxJNCadX2UKGgGR7/IrT6SDAaeaAdLA2gIR0CrB6Q2dd3TdX2UKGgGR7/Ddl/YraufaAdLAmgIR0CrCM8vM8oydX2UKGgGR7/AJGe+VTrFaAdLAmgIR0CrCGq6FuejdX2UKGgGR7+7fVI7Njb0aAdLAmgIR0CrCNiFj/dZdX2UKGgGR7/H8GcFyJbdaAdLA2gIR0CrCBQZGax5dX2UKGgGR7/FmFrVOKwZaAdLA2gIR0CrCHxbB42TdX2UKGgGR7/YfAbhm5DraAdLBGgIR0CrB7s1sLv1dX2UKGgGR7/BcFhXr+o+aAdLAmgIR0CrCOYfwI+odX2UKGgGR7/SKmKqGUOeaAdLA2gIR0CrCCWpZOi4dX2UKGgGR7/CSowVTJhfaAdLAmgIR0CrB8UnXumadX2UKGgGR7/Mnm7rcCYDaAdLA2gIR0CrCItOM2m6dX2UKGgGR7/KwHqu8scyaAdLA2gIR0CrCPSofjjrdX2UKGgGR7++M2m51/2CaAdLAmgIR0CrB86ufVZtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fea58ed65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fea58ed1c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696166906766913867, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAoD3qPgr45L63ZEa94wOBPs9zh7uPPc8+3UbcvUhZ6D7I+mC+2m8Wv9Re5z4mbJw+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAePGjPzbwwL6VOLu/ZK3Gv4ojlz4vl6e/tuIZv+zMkT97d32/nwaMv+terD9m8rk/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAACgPeo+CvjkvrdkRr1DZfi89KqivzXQvb/jA4E+z3OHu489zz6Vv/Y+C2eeOi4NxD7dRty9SFnoPsj6YL4AXvW/8GPUPwlKsL/abxa/1F7nPiZsnD628km/bozVP/HtXj+UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 0.4575014 -0.4472049 -0.04843589]\n [ 0.25198278 -0.00413368 0.40476653]\n [-0.10755704 0.45380616 -0.21970665]\n [-0.5876442 0.45189536 0.3055126 ]]", "desired_goal": "[[ 1.2808065 -0.37683266 -1.4626642 ]\n [-1.5521665 0.29519302 -1.3093013 ]\n [-0.6011156 1.1390662 -0.9901044 ]\n [-1.0939521 1.3466467 1.4527099 ]]", "observation": "[[ 4.57501411e-01 -4.47204888e-01 -4.84358929e-02 -3.03217229e-02\n -1.27084208e+00 -1.48291647e+00]\n [ 2.51982778e-01 -4.13367851e-03 4.04766530e-01 4.81930405e-01\n 1.20851526e-03 3.82913053e-01]\n [-1.07557036e-01 4.53806162e-01 -2.19706655e-01 -1.91693115e+00\n 1.65929985e+00 -1.37725937e+00]\n [-5.87644219e-01 4.51895356e-01 3.05512607e-01 -7.88859725e-01\n 1.66834807e+00 8.70818198e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAABAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAP578vT8WTr3zA1U8DnfMPegj+z3ZTYo+9uroPVaK3r2fv5U+3gDLvSRorj2u72Q+lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.12334871 -0.05031418 0.01300143]\n [ 0.09983645 0.12262708 0.27012518]\n [ 0.1137294 -0.10866229 0.29247758]\n [-0.09912275 0.08515957 0.22357056]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv8RSgoPTXreMAWyUSwOMAXSUR0CnhIfDk2gndX2UKGgGR7/MOPNmlImPaAdLA2gIR0CnhTTYEnstdX2UKGgGR7/Ypc5bQkX2aAdLBGgIR0CnhQBllK9PdX2UKGgGR7+S8BdUsFt9aAdLAWgIR0CnhToDPnjidX2UKGgGR7/ZoqkM1CPZaAdLBGgIR0CnhNJlBhQWdX2UKGgGR7+3pyIYWLxaaAdLAmgIR0CnhJTKcNH6dX2UKGgGR7+aa9bor4FiaAdLAWgIR0CnhNdeIEbHdX2UKGgGR7/S3ueBg/keaAdLA2gIR0CnhUhV+7UYdX2UKGgGR7/RrEcbR4QjaAdLBGgIR0CnhROjqOcUdX2UKGgGR7/SPQOWjXWfaAdLA2gIR0CnhOg00m+kdX2UKGgGR7/ZTTfBN21VaAdLBGgIR0CnhKqhDgIhdX2UKGgGR7+fCZWq94/vaAdLAWgIR0CnhK+sgdOqdX2UKGgGR7/My2x6fJ3gaAdLA2gIR0CnhVrKmsNldX2UKGgGR7/YXumaYu01aAdLBGgIR0CnhStDlYEGdX2UKGgGR7/KGgzxgAp8aAdLA2gIR0CnhPiQ1aW5dX2UKGgGR7/EwxFiKBNFaAdLAmgIR0CnhLr7XQMQdX2UKGgGR7/KN1hb4agmaAdLA2gIR0CnhWzuWrwOdX2UKGgGR7/EqpcX3xnWaAdLAmgIR0CnhThI4EOidX2UKGgGR7+3WNFSbYseaAdLAmgIR0CnhQWQGOdYdX2UKGgGR7/QQL/jsD4haAdLA2gIR0CnhM1MM7U5dX2UKGgGR7/AgX/HYHxCaAdLAmgIR0CnhXe3hGYsdX2UKGgGR7+xQ/HHWBjGaAdLAmgIR0CnhUMcIZ62dX2UKGgGR7+0fr8iwB5paAdLAmgIR0CnhRBuXNTtdX2UKGgGR7+nXAdn003waAdLAWgIR0CnhXz3IuGsdX2UKGgGR7+64axX4j8laAdLAmgIR0CnhNeTvAoHdX2UKGgGR7+ok3S8an76aAdLAWgIR0CnhN8UM5OrdX2UKGgGR7/M5tm+TNdJaAdLA2gIR0CnhVjfvWpZdX2UKGgGR7/DIFvAGjbjaAdLA2gIR0CnhSYt6HCXdX2UKGgGR7/QghbGFSKnaAdLA2gIR0CnhZLL6k6+dX2UKGgGR7/Hlum78Nx3aAdLA2gIR0CnhPHCXQdCdX2UKGgGR7/Dv2oNutOmaAdLAmgIR0CnhZwEyLyddX2UKGgGR7/SBjnV5KODaAdLA2gIR0CnhWdVWCEpdX2UKGgGR7/NSro4dZJTaAdLA2gIR0CnhTSzXz19dX2UKGgGR7+zt+kP+XJHaAdLAmgIR0CnhPugpSaWdX2UKGgGR7+0fq5byH2zaAdLAmgIR0CnhXOCPIXCdX2UKGgGR7/KBEroW56MaAdLA2gIR0CnhUVMuez2dX2UKGgGR7/b98Z1mrbQaAdLBGgIR0CnhbHlwLmZdX2UKGgGR7+3cQAdXDFZaAdLAmgIR0CnhX09ZA6ddX2UKGgGR7/Ysq8UVSGbaAdLBGgIR0CnhRHIIWxhdX2UKGgGR7+yHLzPKMefaAdLAmgIR0CnhbwbEP1+dX2UKGgGR7/PRfnfVI7OaAdLA2gIR0CnhVSS3b22dX2UKGgGR7+UqUeMhougaAdLAWgIR0CnhRbz9S/CdX2UKGgGR7/PiKBNEgGKaAdLA2gIR0CnhY7cfvF4dX2UKGgGR7+79P1tfoicaAdLAmgIR0CnhciHZbpvdX2UKGgGR7/N1aGHpKSQaAdLA2gIR0CnhWWMsH0LdX2UKGgGR7/WQLux8lXzaAdLA2gIR0CnhSf7BO58dX2UKGgGR7/DCVrylN1yaAdLAmgIR0CnhdKqXF98dX2UKGgGR7/MqUeMhougaAdLA2gIR0CnhZ4IjW07dX2UKGgGR7/CClrM1TBJaAdLAmgIR0CnhXBW5paidX2UKGgGR7+zQD3dsSCfaAdLAmgIR0Cnhaqf4AS4dX2UKGgGR7/Q6z3RG+bmaAdLA2gIR0CnhToqslsxdX2UKGgGR7/QSM98qnWKaAdLA2gIR0CnheSRbKRudX2UKGgGR7+6B4D9wWFfaAdLAmgIR0CnhbRfOUt7dX2UKGgGR7/aQgs9SuQqaAdLBGgIR0CnhYawdKdydX2UKGgGR7/QZhKDkELZaAdLA2gIR0CnhUkit7rtdX2UKGgGR7/NECNjslcAaAdLA2gIR0CnhfNz8xbjdX2UKGgGR7/WwqiGnGbTaAdLA2gIR0CnhcWhRIjGdX2UKGgGR7+7dyksSTQmaAdLAmgIR0CnhVUjLSuydX2UKGgGR7/KIRAbADaHaAdLA2gIR0CnhZe5Fw1jdX2UKGgGR7/Qnqmj0tiAaAdLA2gIR0CnhgQ+MZP3dX2UKGgGR7+nMwDeTFERaAdLAWgIR0CnhZyro4dZdX2UKGgGR7/SwIt16mfoaAdLBGgIR0Cnhdjyvs7ddX2UKGgGR7/S/SH/LkjpaAdLBGgIR0CnhWhq9GqhdX2UKGgGR7/KF6iTMaCMaAdLA2gIR0Cnha2St/4JdX2UKGgGR7/bbPQfIS13aAdLBGgIR0CnhhoJiRW+dX2UKGgGR7/Pmhdt2s7uaAdLA2gIR0Cnhep++dsjdX2UKGgGR7/CPgeii7CjaAdLAmgIR0CnhbfIKc/ddX2UKGgGR7/Qff4yoGY8aAdLA2gIR0CnhXo3BHkMdX2UKGgGR7+6rIYFaB7NaAdLAmgIR0CnhiSeAd4ndX2UKGgGR7/CkC3gDRtxaAdLAmgIR0CnhcGZVn27dX2UKGgGR7+6svIwM6RyaAdLAmgIR0CnhjE3S8aodX2UKGgGR7/QVUMoc7yQaAdLA2gIR0CnhfzXarWAdX2UKGgGR7/KjW07bL2YaAdLA2gIR0CnhYycbzbwdX2UKGgGR7/Vcjqv/zasaAdLA2gIR0CnhdQ1rIo3dX2UKGgGR7+6dWhh6SkkaAdLAmgIR0CnhZaoMrmRdX2UKGgGR7/Sjx0+1SflaAdLA2gIR0CnhgwtJ4B4dX2UKGgGR7/WcbzbvgFYaAdLBGgIR0CnhkWmHgxbdX2UKGgGR7+BjSXt0FKTaAdLAWgIR0CnhkzeXRgJdX2UKGgGR7/TUVzp5eJIaAdLA2gIR0CnheVMmF8HdX2UKGgGR7/RFZgXuVopaAdLA2gIR0Cnhae6iCardX2UKGgGR7/PfD1oQFs6aAdLA2gIR0Cnhh1zp5eJdX2UKGgGR7/Ps9jgAIY4aAdLA2gIR0Cnhlvc8DB/dX2UKGgGR7/DlXA/LTx5aAdLAmgIR0Cnhicv24/edX2UKGgGR7/TeRgZ0jkdaAdLA2gIR0CnhbdGRV6vdX2UKGgGR7/WoXKr7wazaAdLBGgIR0Cnhfp5/smfdX2UKGgGR7+W4ZuQ6p5vaAdLAWgIR0CnhbzcAR02dX2UKGgGR7/JHggow22oaAdLA2gIR0Cnhm7f51vEdX2UKGgGR7/Q/lyR0U48aAdLA2gIR0Cnhjo1tO2zdX2UKGgGR7/T3evZAY51aAdLA2gIR0Cnhc87IT4+dX2UKGgGR7/aoOQQtjCpaAdLBGgIR0CnhhJjDsMRdX2UKGgGR7/Rb0voNd7faAdLA2gIR0Cnhn8IJJGwdX2UKGgGR7/IyFfzBhx6aAdLA2gIR0CnhkqLjxTbdX2UKGgGR7+YmkWRA8jiaAdLAWgIR0CnhhfgaWHDdX2UKGgGR7/RxfOUt7KJaAdLA2gIR0CnheFEiMYNdX2UKGgGR7+29zwMH8jzaAdLAmgIR0CnhiPQfIS2dX2UKGgGR7/LzBhx5s0paAdLA2gIR0CnhlvRRdhRdX2UKGgGR7/Vk56t1ZDBaAdLBGgIR0CnhpX7DVH4dX2UKGgGR7/CvGp++dsjaAdLAmgIR0Cnhi5xaPjodX2UKGgGR7/PEaVD8cdYaAdLA2gIR0CnhfD0Dlo2dX2UKGgGR7/Au8K5TZQIaAdLAmgIR0CnhmaVt4zKdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}
|
replay.mp4
CHANGED
Binary files a/replay.mp4 and b/replay.mp4 differ
|
|
results.json
CHANGED
@@ -1 +1 @@
|
|
1 |
-
{"mean_reward": -0.
|
|
|
1 |
+
{"mean_reward": -0.21786061991006136, "std_reward": 0.07512375458034434, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2023-10-01T14:18:28.925641"}
|
vec_normalize.pkl
CHANGED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d909e5e3e33d1b93b43bf0ff4eb51e1184b904fd5e9735c34528689f57be3afd
|
3 |
+
size 2623
|