a2c-PandaReachDense-v3 / config.json
rohitdavas's picture
Initial commit
9ebebb8
raw
history blame
14.5 kB
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVRQAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMG011bHRpSW5wdXRBY3RvckNyaXRpY1BvbGljeZSTlC4=", "__module__": "stable_baselines3.common.policies", "__doc__": "\n MultiInputActorClass policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space (Tuple)\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Uses the CombinedExtractor\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function MultiInputActorCriticPolicy.__init__ at 0x7fea58ed65f0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7fea58ed1c80>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVgQAAAAAAAAB9lCiMD29wdGltaXplcl9jbGFzc5SME3RvcmNoLm9wdGltLnJtc3Byb3CUjAdSTVNwcm9wlJOUjBBvcHRpbWl6ZXJfa3dhcmdzlH2UKIwFYWxwaGGURz/vrhR64UeujANlcHOURz7k+LWI42jxjAx3ZWlnaHRfZGVjYXmUSwB1dS4=", "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 1000000, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1696163144615079079, "learning_rate": 0.0007, "tensorboard_log": null, "_last_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAAVL6EPmPIrbnhseQ+bjYPv7k6475Q+LE+t7mqv+pDpL86rou/VL6EPmPIrbnhseQ+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAA97Z0PwemtD/FZz2/8itXvrgIj7/nj1s/HZqCv1jEx7/6kJg9H+VRP70apr8GinO/lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAABUvoQ+Y8itueGx5D5kK/g+lsqguvCOxj5uNg+/uTrjvlD4sT45oVS/X6nOv4LCZT+3uaq/6kOkvzqui78qMIC/ufhqv/PwVL5UvoQ+Y8itueGx5D5kK/g+lsqguvCOxj6UaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 2.5926459e-01 -3.3146431e-04 4.4666961e-01]\n [-5.5942428e-01 -4.4380739e-01 3.4759760e-01]\n [-1.3337926e+00 -1.2833226e+00 -1.0912545e+00]\n [ 2.5926459e-01 -3.3146431e-04 4.4666961e-01]]", "desired_goal": "[[ 0.9559168 1.4113168 -0.73986465]\n [-0.21012858 -1.1174536 0.8576645 ]\n [-1.0203282 -1.5606794 0.07449527]\n [ 0.81990236 -1.297691 -0.9513248 ]]", "observation": "[[ 2.5926459e-01 -3.3146431e-04 4.4666961e-01 4.8470604e-01\n -1.2267407e-03 3.8780928e-01]\n [-5.5942428e-01 -4.4380739e-01 3.4759760e-01 -8.3058506e-01\n -1.6145438e+00 8.9749920e-01]\n [-1.3337926e+00 -1.2833226e+00 -1.0912545e+00 -1.0014699e+00\n -9.1785771e-01 -2.0795040e-01]\n [ 2.5926459e-01 -3.3146431e-04 4.4666961e-01 4.8470604e-01\n -1.2267407e-03 3.8780928e-01]]"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAEAAAGUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'collections.OrderedDict'>", ":serialized:": "gAWVuwEAAAAAAACMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QoljAAAAAAAAAA6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+6nIdPRlsGqxDI0o+lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksESwOGlIwBQ5R0lFKUjAxkZXNpcmVkX2dvYWyUaAcoljAAAAAAAAAAaiO4vaD8Pr1gqnI99arnvXxoCr6ESyg+OUEKPklaBz0tQjg+QNO9PZRkq712tOE8lGgOSwRLA4aUaBJ0lFKUjAtvYnNlcnZhdGlvbpRoByiWYAAAAAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAADqch09GWwarEMjSj4AAAAAAAAAgAAAAACUaA5LBEsGhpRoEnSUUpR1Lg==", "achieved_goal": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01]]", "desired_goal": "[[-0.0899113 -0.04662764 0.05924451]\n [-0.11311904 -0.1351642 0.16435057]\n [ 0.13501443 0.03304509 0.17993994]\n [ 0.09268808 -0.08368793 0.02755187]]", "observation": "[[ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]\n [ 3.8439669e-02 -2.1944723e-12 1.9740014e-01 0.0000000e+00\n -0.0000000e+00 0.0000000e+00]]"}, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWV4AsAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHv6B7NSqEOAmMAWyUSwGMAXSUR0CrBrVB2OhkdX2UKGgGR7/ZbA1vVEuyaAdLBGgIR0CrB4AHVwxWdX2UKGgGR7/ByVfNRm9QaAdLAmgIR0CrByCbDuSfdX2UKGgGR7+5hx5s0pEyaAdLAmgIR0CrBsAOavzOdX2UKGgGR7/S00m+j/MoaAdLA2gIR0CrBl98zAN5dX2UKGgGR7/SBcAzYVZcaAdLA2gIR0CrB5JrULDydX2UKGgGR7+5MYdhiLEUaAdLAmgIR0CrBs1IZqEfdX2UKGgGR7+8bm2b5M11aAdLAmgIR0CrBmyyMUAUdX2UKGgGR7/QFcIJJGvwaAdLA2gIR0CrBzMJY1YRdX2UKGgGR7+xgH/tIClraAdLAmgIR0CrBtbK7qY7dX2UKGgGR7/CvpyIYWLxaAdLAmgIR0CrBnY/3WWhdX2UKGgGR7/SF0PpY9xIaAdLA2gIR0CrB6KQA+6idX2UKGgGR7/SixVyWAwxaAdLA2gIR0CrB0KvmozfdX2UKGgGR7/QBeokzGgjaAdLA2gIR0CrBulglWwNdX2UKGgGR7/JBzFMqSX/aAdLA2gIR0CrBojdP+GXdX2UKGgGR7/Jx82Jiy6daAdLA2gIR0CrB7QR5C4SdX2UKGgGR7/MCCjDbah6aAdLA2gIR0CrB1RdyDIzdX2UKGgGR7/OI42jwhGIaAdLA2gIR0CrBpgvDgqFdX2UKGgGR7/JHd43WFviaAdLA2gIR0CrB8MrEtNBdX2UKGgGR7/Bqkdmxt52aAdLAmgIR0CrB1690zTGdX2UKGgGR7/Xmp2ll9SdaAdLBGgIR0CrBv5h8YygdX2UKGgGR7/ELcbiqABlaAdLAmgIR0CrB88yFfzCdX2UKGgGR7+87zTWoWHlaAdLAmgIR0CrBwn3UQTVdX2UKGgGR7/S7MPjGT9saAdLA2gIR0CrBqnB+F10dX2UKGgGR7/Xst03fhuPaAdLBGgIR0CrB3VTisGQdX2UKGgGR7/MrQw9JSR9aAdLA2gIR0CrBxnrpqyodX2UKGgGR7/Rqaw2VE/jaAdLA2gIR0CrBrlolD4QdX2UKGgGR7/UPdEb5uZUaAdLBGgIR0CrB+clPacqdX2UKGgGR7+/LDAJswcpaAdLAmgIR0CrB4KY7aIvdX2UKGgGR7+z7O3UhFEzaAdLAmgIR0CrByakIomYdX2UKGgGR7/AP4EfT1CgaAdLAmgIR0CrBsYOc2BKdX2UKGgGR7/PIFvAGjbjaAdLA2gIR0CrB/Yb83uNdX2UKGgGR7/R7jDKoybhaAdLA2gIR0CrB5GYrrgPdX2UKGgGR7+yc+aBqbjMaAdLAmgIR0CrBzEVN5+pdX2UKGgGR7/YIcinpB5YaAdLBGgIR0CrBtwJgLJCdX2UKGgGR7/UJlar3j+8aAdLA2gIR0CrCAbgjyFxdX2UKGgGR7/GibDuSfUXaAdLA2gIR0CrB6JpnHvMdX2UKGgGR7+nljmSyMUAaAdLAWgIR0CrCAvXkHUudX2UKGgGR7+lYp2ECeVcaAdLAWgIR0CrB6dPLxI8dX2UKGgGR7/gSVW0Z3s5aAdLBWgIR0CrB02tuDSPdX2UKGgGR7/Llz2exwAEaAdLA2gIR0CrBu2K/EfldX2UKGgGR7+1YB/7SApbaAdLAmgIR0CrCBiSaEzwdX2UKGgGR7+Sq2jO9nK5aAdLAWgIR0CrB1Npudf+dX2UKGgGR7/SIiC8OCoTaAdLA2gIR0CrB7szEaVEdX2UKGgGR7/MAoXsPatcaAdLA2gIR0CrBv71RLsbdX2UKGgGR7/T9K28Zk08aAdLA2gIR0CrCCnhsImgdX2UKGgGR7/A8AaNuLrHaAdLAmgIR0CrB8VhTfixdX2UKGgGR7/SqveP7vXtaAdLA2gIR0CrB2TYEnstdX2UKGgGR7+75pJwsGxEaAdLAmgIR0CrBwiHh0hedX2UKGgGR7/DQjUutfXxaAdLAmgIR0CrB86uwHJLdX2UKGgGR7/S+qioKlYVaAdLA2gIR0CrCDpg1FYudX2UKGgGR7/UQSi/O+qSaAdLA2gIR0CrB3UuUUwjdX2UKGgGR7+8SYgJTl1baAdLAmgIR0CrBxUmdAgQdX2UKGgGR7+3DO1OTJQtaAdLAmgIR0CrCETGYKIBdX2UKGgGR7/YahHskY4yaAdLBGgIR0CrB+Tc6/7BdX2UKGgGR7/TeokzGgjAaAdLA2gIR0CrByOeBg/kdX2UKGgGR7+4TAWSEDhcaAdLAmgIR0CrCE57PY4AdX2UKGgGR7/ZadMCcPOIaAdLBWgIR0CrB5ASeyzHdX2UKGgGR7/V2zv7WNFSaAdLA2gIR0CrB/XU6PsBdX2UKGgGR7/KnSfDk2gnaAdLA2gIR0CrBzSWRigCdX2UKGgGR7/Wg+yJKraNaAdLBGgIR0CrCGRRl6JJdX2UKGgGR7+/jjrAxi5NaAdLAmgIR0CrB//grH2idX2UKGgGR7/QKr7wazeGaAdLA2gIR0CrB59ph4MXdX2UKGgGR7/GQcxTKkmAaAdLAmgIR0CrBz8NhE0BdX2UKGgGR7+7FdcB2fTTaAdLAmgIR0CrCHEYO2AodX2UKGgGR7/BrnDBMzuXaAdLAmgIR0CrCAzJQtSRdX2UKGgGR7/QH58BuGbkaAdLA2gIR0CrB7IoNNJwdX2UKGgGR7+9IvrWy1NQaAdLAmgIR0CrCBfGdZq3dX2UKGgGR7/XTRYzSCvpaAdLBGgIR0CrB1bs4T9LdX2UKGgGR7/XR/EwWWQfaAdLBGgIR0CrCIadc0LudX2UKGgGR7/L6lchTwUhaAdLA2gIR0CrB8G7z06HdX2UKGgGR7/ByzXz19ORaAdLAmgIR0CrB2E6cRUWdX2UKGgGR7/GXm/336AOaAdLA2gIR0CrCCpW/8EWdX2UKGgGR7/Nu0CzTnaGaAdLA2gIR0CrCJjDKoycdX2UKGgGR7/PwtJ4B3iaaAdLA2gIR0CrB3LZrYXgdX2UKGgGR7+1j6N2ki2VaAdLAmgIR0CrCKIo3JgcdX2UKGgGR7/etx+8XenAaAdLBGgIR0CrCD2mpEQYdX2UKGgGR7/W9tMwlByCaAdLBWgIR0CrB90/GEPEdX2UKGgGR7/NVktmL9/CaAdLA2gIR0CrB4QP7N0OdX2UKGgGR7/Qgs9SuQp4aAdLA2gIR0CrCLOGCZnddX2UKGgGR7/KpeeFtbcHaAdLA2gIR0CrCE8WsRxtdX2UKGgGR7/SnGsFMZgpaAdLA2gIR0CrB+6ab4JvdX2UKGgGR7/U4y44Ia99aAdLA2gIR0CrB5LSE12rdX2UKGgGR7/LCP6sQumKaAdLA2gIR0CrCMSwW3z+dX2UKGgGR7/VG0/nnuAqaAdLA2gIR0CrCGA3cYZVdX2UKGgGR7/R3solUp/gaAdLA2gIR0CrB//1pTMrdX2UKGgGR7+E7bL2YfGNaAdLAWgIR0CrCASxJNCadX2UKGgGR7/IrT6SDAaeaAdLA2gIR0CrB6Q2dd3TdX2UKGgGR7/Ddl/YraufaAdLAmgIR0CrCM8vM8oydX2UKGgGR7/AJGe+VTrFaAdLAmgIR0CrCGq6FuejdX2UKGgGR7+7fVI7Njb0aAdLAmgIR0CrCNiFj/dZdX2UKGgGR7/H8GcFyJbdaAdLA2gIR0CrCBQZGax5dX2UKGgGR7/FmFrVOKwZaAdLA2gIR0CrCHxbB42TdX2UKGgGR7/YfAbhm5DraAdLBGgIR0CrB7s1sLv1dX2UKGgGR7/BcFhXr+o+aAdLAmgIR0CrCOYfwI+odX2UKGgGR7/SKmKqGUOeaAdLA2gIR0CrCCWpZOi4dX2UKGgGR7/CSowVTJhfaAdLAmgIR0CrB8UnXumadX2UKGgGR7/Mnm7rcCYDaAdLA2gIR0CrCItOM2m6dX2UKGgGR7/KwHqu8scyaAdLA2gIR0CrCPSofjjrdX2UKGgGR7++M2m51/2CaAdLAmgIR0CrB86ufVZtdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 50000, "n_steps": 5, "gamma": 0.99, "gae_lambda": 1.0, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gymnasium.spaces.dict.Dict'>", ":serialized:": "gAWVsAMAAAAAAACMFWd5bW5hc2l1bS5zcGFjZXMuZGljdJSMBERpY3SUk5QpgZR9lCiMBnNwYWNlc5SMC2NvbGxlY3Rpb25zlIwLT3JkZXJlZERpY3SUk5QpUpQojA1hY2hpZXZlZF9nb2FslIwUZ3ltbmFzaXVtLnNwYWNlcy5ib3iUjANCb3iUk5QpgZR9lCiMBWR0eXBllIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowNYm91bmRlZF9iZWxvd5SMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYDAAAAAAAAAAEBAZRoE4wCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksDhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoHCiWAwAAAAAAAAABAQGUaCBLA4WUaCR0lFKUjAZfc2hhcGWUSwOFlIwDbG93lGgcKJYMAAAAAAAAAAAAIMEAACDBAAAgwZRoFksDhZRoJHSUUpSMBGhpZ2iUaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlIwIbG93X3JlcHKUjAUtMTAuMJSMCWhpZ2hfcmVwcpSMBDEwLjCUjApfbnBfcmFuZG9tlE51YowMZGVzaXJlZF9nb2FslGgNKYGUfZQoaBBoFmgZaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgnaBwolgMAAAAAAAAAAQEBlGggSwOFlGgkdJRSlGgsSwOFlGguaBwolgwAAAAAAAAAAAAgwQAAIMEAACDBlGgWSwOFlGgkdJRSlGgzaBwolgwAAAAAAAAAAAAgQQAAIEEAACBBlGgWSwOFlGgkdJRSlGg4jAUtMTAuMJRoOowEMTAuMJRoPE51YowLb2JzZXJ2YXRpb26UaA0pgZR9lChoEGgWaBloHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCdoHCiWBgAAAAAAAAABAQEBAQGUaCBLBoWUaCR0lFKUaCxLBoWUaC5oHCiWGAAAAAAAAAAAACDBAAAgwQAAIMEAACDBAAAgwQAAIMGUaBZLBoWUaCR0lFKUaDNoHCiWGAAAAAAAAAAAACBBAAAgQQAAIEEAACBBAAAgQQAAIEGUaBZLBoWUaCR0lFKUaDiMBS0xMC4wlGg6jAQxMC4wlGg8TnVidWgsTmgQTmg8TnViLg==", "spaces": "OrderedDict([('achieved_goal', Box(-10.0, 10.0, (3,), float32)), ('desired_goal', Box(-10.0, 10.0, (3,), float32)), ('observation', Box(-10.0, 10.0, (6,), float32))])", "_shape": null, "dtype": null, "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVnQEAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWAwAAAAAAAAABAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLA4WUjAFDlHSUUpSMDWJvdW5kZWRfYWJvdmWUaBEolgMAAAAAAAAAAQEBlGgVSwOFlGgZdJRSlIwGX3NoYXBllEsDhZSMA2xvd5RoESiWDAAAAAAAAAAAAIC/AACAvwAAgL+UaAtLA4WUaBl0lFKUjARoaWdolGgRKJYMAAAAAAAAAAAAgD8AAIA/AACAP5RoC0sDhZRoGXSUUpSMCGxvd19yZXBylIwELTEuMJSMCWhpZ2hfcmVwcpSMAzEuMJSMCl9ucF9yYW5kb22UTnViLg==", "dtype": "float32", "bounded_below": "[ True True True]", "bounded_above": "[ True True True]", "_shape": [3], "low": "[-1. -1. -1.]", "high": "[1. 1. 1.]", "low_repr": "-1.0", "high_repr": "1.0", "_np_random": null}, "n_envs": 4, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuDQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9G8AaNuLrHhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-5.15.120+-x86_64-with-glibc2.35 # 1 SMP Wed Aug 30 11:19:59 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.1.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.23.5", "Cloudpickle": "2.2.1", "Gymnasium": "0.29.1", "OpenAI Gym": "0.25.2"}}