End of training
Browse files
README.md
CHANGED
@@ -1,201 +1,127 @@
|
|
1 |
---
|
2 |
-
|
3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
4 |
---
|
5 |
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
|
56 |
-
|
57 |
-
|
58 |
-
|
59 |
-
|
60 |
-
|
61 |
-
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
|
92 |
-
|
93 |
-
|
94 |
-
|
95 |
-
|
96 |
-
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
|
112 |
-
|
113 |
-
|
114 |
-
|
115 |
-
|
116 |
-
|
117 |
-
|
118 |
-
|
119 |
-
|
120 |
-
|
121 |
-
#### Metrics
|
122 |
-
|
123 |
-
<!-- These are the evaluation metrics being used, ideally with a description of why. -->
|
124 |
-
|
125 |
-
[More Information Needed]
|
126 |
-
|
127 |
-
### Results
|
128 |
-
|
129 |
-
[More Information Needed]
|
130 |
-
|
131 |
-
#### Summary
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
## Model Examination [optional]
|
136 |
-
|
137 |
-
<!-- Relevant interpretability work for the model goes here -->
|
138 |
-
|
139 |
-
[More Information Needed]
|
140 |
-
|
141 |
-
## Environmental Impact
|
142 |
-
|
143 |
-
<!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
|
144 |
-
|
145 |
-
Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
|
146 |
-
|
147 |
-
- **Hardware Type:** [More Information Needed]
|
148 |
-
- **Hours used:** [More Information Needed]
|
149 |
-
- **Cloud Provider:** [More Information Needed]
|
150 |
-
- **Compute Region:** [More Information Needed]
|
151 |
-
- **Carbon Emitted:** [More Information Needed]
|
152 |
-
|
153 |
-
## Technical Specifications [optional]
|
154 |
-
|
155 |
-
### Model Architecture and Objective
|
156 |
-
|
157 |
-
[More Information Needed]
|
158 |
-
|
159 |
-
### Compute Infrastructure
|
160 |
-
|
161 |
-
[More Information Needed]
|
162 |
-
|
163 |
-
#### Hardware
|
164 |
-
|
165 |
-
[More Information Needed]
|
166 |
-
|
167 |
-
#### Software
|
168 |
-
|
169 |
-
[More Information Needed]
|
170 |
-
|
171 |
-
## Citation [optional]
|
172 |
-
|
173 |
-
<!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
|
174 |
-
|
175 |
-
**BibTeX:**
|
176 |
-
|
177 |
-
[More Information Needed]
|
178 |
-
|
179 |
-
**APA:**
|
180 |
-
|
181 |
-
[More Information Needed]
|
182 |
-
|
183 |
-
## Glossary [optional]
|
184 |
-
|
185 |
-
<!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
|
186 |
-
|
187 |
-
[More Information Needed]
|
188 |
-
|
189 |
-
## More Information [optional]
|
190 |
-
|
191 |
-
[More Information Needed]
|
192 |
-
|
193 |
-
## Model Card Authors [optional]
|
194 |
-
|
195 |
-
[More Information Needed]
|
196 |
-
|
197 |
-
## Model Card Contact
|
198 |
-
|
199 |
-
[More Information Needed]
|
200 |
-
|
201 |
-
|
|
|
1 |
---
|
2 |
+
license: other
|
3 |
+
base_model: nvidia/mit-b0
|
4 |
+
tags:
|
5 |
+
- vision
|
6 |
+
- image-segmentation
|
7 |
+
- generated_from_trainer
|
8 |
+
model-index:
|
9 |
+
- name: segformer-b0-finetuned-segments-dots-1
|
10 |
+
results: []
|
11 |
---
|
12 |
|
13 |
+
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
|
14 |
+
should probably proofread and complete it, then remove this comment. -->
|
15 |
+
|
16 |
+
# segformer-b0-finetuned-segments-dots-1
|
17 |
+
|
18 |
+
This model is a fine-tuned version of [nvidia/mit-b0](https://huggingface.co/nvidia/mit-b0) on the rohan8020/test dataset.
|
19 |
+
It achieves the following results on the evaluation set:
|
20 |
+
- Loss: 0.0000
|
21 |
+
- Mean Iou: 0.0
|
22 |
+
- Mean Accuracy: nan
|
23 |
+
- Overall Accuracy: nan
|
24 |
+
- Accuracy Unlabeled: nan
|
25 |
+
- Accuracy Dots: nan
|
26 |
+
- Iou Unlabeled: 0.0
|
27 |
+
- Iou Dots: 0.0
|
28 |
+
|
29 |
+
## Model description
|
30 |
+
|
31 |
+
More information needed
|
32 |
+
|
33 |
+
## Intended uses & limitations
|
34 |
+
|
35 |
+
More information needed
|
36 |
+
|
37 |
+
## Training and evaluation data
|
38 |
+
|
39 |
+
More information needed
|
40 |
+
|
41 |
+
## Training procedure
|
42 |
+
|
43 |
+
### Training hyperparameters
|
44 |
+
|
45 |
+
The following hyperparameters were used during training:
|
46 |
+
- learning_rate: 6e-05
|
47 |
+
- train_batch_size: 2
|
48 |
+
- eval_batch_size: 2
|
49 |
+
- seed: 42
|
50 |
+
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
|
51 |
+
- lr_scheduler_type: linear
|
52 |
+
- num_epochs: 250
|
53 |
+
|
54 |
+
### Training results
|
55 |
+
|
56 |
+
| Training Loss | Epoch | Step | Validation Loss | Mean Iou | Mean Accuracy | Overall Accuracy | Accuracy Unlabeled | Accuracy Dots | Iou Unlabeled | Iou Dots |
|
57 |
+
|:-------------:|:-----:|:----:|:---------------:|:--------:|:-------------:|:----------------:|:------------------:|:-------------:|:-------------:|:--------:|
|
58 |
+
| 0.0029 | 4.0 | 20 | 0.0122 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
59 |
+
| 0.0004 | 8.0 | 40 | 0.0010 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
60 |
+
| 0.0003 | 12.0 | 60 | 0.0004 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
61 |
+
| 0.0003 | 16.0 | 80 | 0.0003 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
62 |
+
| 0.0003 | 20.0 | 100 | 0.0002 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
63 |
+
| 0.0002 | 24.0 | 120 | 0.0002 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
64 |
+
| 0.0001 | 28.0 | 140 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
65 |
+
| 0.0002 | 32.0 | 160 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
66 |
+
| 0.0001 | 36.0 | 180 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
67 |
+
| 0.0001 | 40.0 | 200 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
68 |
+
| 0.0002 | 44.0 | 220 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
69 |
+
| 0.0001 | 48.0 | 240 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
70 |
+
| 0.0001 | 52.0 | 260 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
71 |
+
| 0.0001 | 56.0 | 280 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
72 |
+
| 0.0 | 60.0 | 300 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
73 |
+
| 0.0001 | 64.0 | 320 | 0.0001 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
74 |
+
| 0.0001 | 68.0 | 340 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
75 |
+
| 0.0001 | 72.0 | 360 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
76 |
+
| 0.0001 | 76.0 | 380 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
77 |
+
| 0.0 | 80.0 | 400 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
78 |
+
| 0.0001 | 84.0 | 420 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
79 |
+
| 0.0 | 88.0 | 440 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
80 |
+
| 0.0001 | 92.0 | 460 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
81 |
+
| 0.0 | 96.0 | 480 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
82 |
+
| 0.0 | 100.0 | 500 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
83 |
+
| 0.0 | 104.0 | 520 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
84 |
+
| 0.0 | 108.0 | 540 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
85 |
+
| 0.0 | 112.0 | 560 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
86 |
+
| 0.0 | 116.0 | 580 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
87 |
+
| 0.0 | 120.0 | 600 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
88 |
+
| 0.0 | 124.0 | 620 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
89 |
+
| 0.0 | 128.0 | 640 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
90 |
+
| 0.0 | 132.0 | 660 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
91 |
+
| 0.0 | 136.0 | 680 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
92 |
+
| 0.0 | 140.0 | 700 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
93 |
+
| 0.0 | 144.0 | 720 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
94 |
+
| 0.0 | 148.0 | 740 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
95 |
+
| 0.0 | 152.0 | 760 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
96 |
+
| 0.0 | 156.0 | 780 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
97 |
+
| 0.0 | 160.0 | 800 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
98 |
+
| 0.0 | 164.0 | 820 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
99 |
+
| 0.0 | 168.0 | 840 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
100 |
+
| 0.0 | 172.0 | 860 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
101 |
+
| 0.0 | 176.0 | 880 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
102 |
+
| 0.0 | 180.0 | 900 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
103 |
+
| 0.0 | 184.0 | 920 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
104 |
+
| 0.0 | 188.0 | 940 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
105 |
+
| 0.0 | 192.0 | 960 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
106 |
+
| 0.0 | 196.0 | 980 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
107 |
+
| 0.0 | 200.0 | 1000 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
108 |
+
| 0.0 | 204.0 | 1020 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
109 |
+
| 0.0 | 208.0 | 1040 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
110 |
+
| 0.0 | 212.0 | 1060 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
111 |
+
| 0.0 | 216.0 | 1080 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
112 |
+
| 0.0 | 220.0 | 1100 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
113 |
+
| 0.0 | 224.0 | 1120 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
114 |
+
| 0.0 | 228.0 | 1140 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
115 |
+
| 0.0 | 232.0 | 1160 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
116 |
+
| 0.0 | 236.0 | 1180 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
117 |
+
| 0.0 | 240.0 | 1200 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
118 |
+
| 0.0 | 244.0 | 1220 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
119 |
+
| 0.0 | 248.0 | 1240 | 0.0000 | 0.0 | nan | nan | nan | nan | 0.0 | 0.0 |
|
120 |
+
|
121 |
+
|
122 |
+
### Framework versions
|
123 |
+
|
124 |
+
- Transformers 4.37.0
|
125 |
+
- Pytorch 2.1.0+cu121
|
126 |
+
- Datasets 2.16.1
|
127 |
+
- Tokenizers 0.15.0
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
config.json
ADDED
@@ -0,0 +1,78 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"_name_or_path": "nvidia/mit-b0",
|
3 |
+
"architectures": [
|
4 |
+
"SegformerForSemanticSegmentation"
|
5 |
+
],
|
6 |
+
"attention_probs_dropout_prob": 0.0,
|
7 |
+
"classifier_dropout_prob": 0.1,
|
8 |
+
"decoder_hidden_size": 256,
|
9 |
+
"depths": [
|
10 |
+
2,
|
11 |
+
2,
|
12 |
+
2,
|
13 |
+
2
|
14 |
+
],
|
15 |
+
"downsampling_rates": [
|
16 |
+
1,
|
17 |
+
4,
|
18 |
+
8,
|
19 |
+
16
|
20 |
+
],
|
21 |
+
"drop_path_rate": 0.1,
|
22 |
+
"hidden_act": "gelu",
|
23 |
+
"hidden_dropout_prob": 0.0,
|
24 |
+
"hidden_sizes": [
|
25 |
+
32,
|
26 |
+
64,
|
27 |
+
160,
|
28 |
+
256
|
29 |
+
],
|
30 |
+
"id2label": {
|
31 |
+
"0": "unlabeled",
|
32 |
+
"1": "dots"
|
33 |
+
},
|
34 |
+
"image_size": 224,
|
35 |
+
"initializer_range": 0.02,
|
36 |
+
"label2id": {
|
37 |
+
"dots": 1,
|
38 |
+
"unlabeled": 0
|
39 |
+
},
|
40 |
+
"layer_norm_eps": 1e-06,
|
41 |
+
"mlp_ratios": [
|
42 |
+
4,
|
43 |
+
4,
|
44 |
+
4,
|
45 |
+
4
|
46 |
+
],
|
47 |
+
"model_type": "segformer",
|
48 |
+
"num_attention_heads": [
|
49 |
+
1,
|
50 |
+
2,
|
51 |
+
5,
|
52 |
+
8
|
53 |
+
],
|
54 |
+
"num_channels": 3,
|
55 |
+
"num_encoder_blocks": 4,
|
56 |
+
"patch_sizes": [
|
57 |
+
7,
|
58 |
+
3,
|
59 |
+
3,
|
60 |
+
3
|
61 |
+
],
|
62 |
+
"reshape_last_stage": true,
|
63 |
+
"semantic_loss_ignore_index": 255,
|
64 |
+
"sr_ratios": [
|
65 |
+
8,
|
66 |
+
4,
|
67 |
+
2,
|
68 |
+
1
|
69 |
+
],
|
70 |
+
"strides": [
|
71 |
+
4,
|
72 |
+
2,
|
73 |
+
2,
|
74 |
+
2
|
75 |
+
],
|
76 |
+
"torch_dtype": "float32",
|
77 |
+
"transformers_version": "4.37.0"
|
78 |
+
}
|
model.safetensors
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:3d867b303265c4368ba34b619029fdbcb5b6946363e412659d11aaa9244b6100
|
3 |
+
size 14884776
|
runs/Jan22_23-19-03_cffa40923369/events.out.tfevents.1705965561.cffa40923369.6455.2
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:893a9ea3a354cea49ecfe3ca024ce8bd645bfd131edf1804f3579d6aa0cf81d4
|
3 |
+
size 7934
|
runs/Jan22_23-25-35_cffa40923369/events.out.tfevents.1705965944.cffa40923369.6455.3
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a027e221be1f96b07677a957edc220dce135267239b25247f9d4428469dbe110
|
3 |
+
size 242463
|
training_args.bin
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:fa79bd973d151f3f242f58d2bbb0c56eb005c47accc88a9786e9ebe1fa2ca9ad
|
3 |
+
size 4792
|