rodrigorcarmo commited on
Commit
db74a49
·
verified ·
1 Parent(s): 144e3d3

refactor: changing from sklearn model to pipeline

Browse files
Files changed (3) hide show
  1. README.md +187 -0
  2. config.json +1 -1
  3. pipeline_sentiment_analysis.pkl +3 -0
README.md ADDED
@@ -0,0 +1,187 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: sklearn
3
+ license: mit
4
+ tags:
5
+ - sklearn
6
+ - skops
7
+ - text-classification
8
+ model_format: pickle
9
+ model_file: pipeline_sentiment_analysis.pkl
10
+ ---
11
+
12
+ # Model description
13
+
14
+ [More Information Needed]
15
+
16
+ ## Intended uses & limitations
17
+
18
+ [More Information Needed]
19
+
20
+ ## Training Procedure
21
+
22
+ [More Information Needed]
23
+
24
+ ### Hyperparameters
25
+
26
+ <details>
27
+ <summary> Click to expand </summary>
28
+
29
+ | Hyperparameter | Value |
30
+ |---------------------------|-------------------------|
31
+ | memory | |
32
+ | steps | [('vectorizer', TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),<br /> sublinear_tf=True)), ('mnb', MultinomialNB())] |
33
+ | verbose | False |
34
+ | vectorizer | TfidfVectorizer(encoding='latin-1', min_df=5, ngram_range=(1, 2),<br /> sublinear_tf=True) |
35
+ | mnb | MultinomialNB() |
36
+ | vectorizer__analyzer | word |
37
+ | vectorizer__binary | False |
38
+ | vectorizer__decode_error | strict |
39
+ | vectorizer__dtype | <class 'numpy.float64'> |
40
+ | vectorizer__encoding | latin-1 |
41
+ | vectorizer__input | content |
42
+ | vectorizer__lowercase | True |
43
+ | vectorizer__max_df | 1.0 |
44
+ | vectorizer__max_features | |
45
+ | vectorizer__min_df | 5 |
46
+ | vectorizer__ngram_range | (1, 2) |
47
+ | vectorizer__norm | l2 |
48
+ | vectorizer__preprocessor | |
49
+ | vectorizer__smooth_idf | True |
50
+ | vectorizer__stop_words | |
51
+ | vectorizer__strip_accents | |
52
+ | vectorizer__sublinear_tf | True |
53
+ | vectorizer__token_pattern | (?u)\b\w\w+\b |
54
+ | vectorizer__tokenizer | |
55
+ | vectorizer__use_idf | True |
56
+ | vectorizer__vocabulary | |
57
+ | mnb__alpha | 1.0 |
58
+ | mnb__class_prior | |
59
+ | mnb__fit_prior | True |
60
+ | mnb__force_alpha | True |
61
+
62
+ </details>
63
+
64
+ ### Model Plot
65
+
66
+ <style>#sk-container-id-1 {/* Definition of color scheme common for light and dark mode */--sklearn-color-text: black;--sklearn-color-line: gray;/* Definition of color scheme for unfitted estimators */--sklearn-color-unfitted-level-0: #fff5e6;--sklearn-color-unfitted-level-1: #f6e4d2;--sklearn-color-unfitted-level-2: #ffe0b3;--sklearn-color-unfitted-level-3: chocolate;/* Definition of color scheme for fitted estimators */--sklearn-color-fitted-level-0: #f0f8ff;--sklearn-color-fitted-level-1: #d4ebff;--sklearn-color-fitted-level-2: #b3dbfd;--sklearn-color-fitted-level-3: cornflowerblue;/* Specific color for light theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, white)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, black)));--sklearn-color-icon: #696969;@media (prefers-color-scheme: dark) {/* Redefinition of color scheme for dark theme */--sklearn-color-text-on-default-background: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-background: var(--sg-background-color, var(--theme-background, var(--jp-layout-color0, #111)));--sklearn-color-border-box: var(--sg-text-color, var(--theme-code-foreground, var(--jp-content-font-color1, white)));--sklearn-color-icon: #878787;}
67
+ }#sk-container-id-1 {color: var(--sklearn-color-text);
68
+ }#sk-container-id-1 pre {padding: 0;
69
+ }#sk-container-id-1 input.sk-hidden--visually {border: 0;clip: rect(1px 1px 1px 1px);clip: rect(1px, 1px, 1px, 1px);height: 1px;margin: -1px;overflow: hidden;padding: 0;position: absolute;width: 1px;
70
+ }#sk-container-id-1 div.sk-dashed-wrapped {border: 1px dashed var(--sklearn-color-line);margin: 0 0.4em 0.5em 0.4em;box-sizing: border-box;padding-bottom: 0.4em;background-color: var(--sklearn-color-background);
71
+ }#sk-container-id-1 div.sk-container {/* jupyter's `normalize.less` sets `[hidden] { display: none; }`but bootstrap.min.css set `[hidden] { display: none !important; }`so we also need the `!important` here to be able to override thedefault hidden behavior on the sphinx rendered scikit-learn.org.See: https://github.com/scikit-learn/scikit-learn/issues/21755 */display: inline-block !important;position: relative;
72
+ }#sk-container-id-1 div.sk-text-repr-fallback {display: none;
73
+ }div.sk-parallel-item,
74
+ div.sk-serial,
75
+ div.sk-item {/* draw centered vertical line to link estimators */background-image: linear-gradient(var(--sklearn-color-text-on-default-background), var(--sklearn-color-text-on-default-background));background-size: 2px 100%;background-repeat: no-repeat;background-position: center center;
76
+ }/* Parallel-specific style estimator block */#sk-container-id-1 div.sk-parallel-item::after {content: "";width: 100%;border-bottom: 2px solid var(--sklearn-color-text-on-default-background);flex-grow: 1;
77
+ }#sk-container-id-1 div.sk-parallel {display: flex;align-items: stretch;justify-content: center;background-color: var(--sklearn-color-background);position: relative;
78
+ }#sk-container-id-1 div.sk-parallel-item {display: flex;flex-direction: column;
79
+ }#sk-container-id-1 div.sk-parallel-item:first-child::after {align-self: flex-end;width: 50%;
80
+ }#sk-container-id-1 div.sk-parallel-item:last-child::after {align-self: flex-start;width: 50%;
81
+ }#sk-container-id-1 div.sk-parallel-item:only-child::after {width: 0;
82
+ }/* Serial-specific style estimator block */#sk-container-id-1 div.sk-serial {display: flex;flex-direction: column;align-items: center;background-color: var(--sklearn-color-background);padding-right: 1em;padding-left: 1em;
83
+ }/* Toggleable style: style used for estimator/Pipeline/ColumnTransformer box that is
84
+ clickable and can be expanded/collapsed.
85
+ - Pipeline and ColumnTransformer use this feature and define the default style
86
+ - Estimators will overwrite some part of the style using the `sk-estimator` class
87
+ *//* Pipeline and ColumnTransformer style (default) */#sk-container-id-1 div.sk-toggleable {/* Default theme specific background. It is overwritten whether we have aspecific estimator or a Pipeline/ColumnTransformer */background-color: var(--sklearn-color-background);
88
+ }/* Toggleable label */
89
+ #sk-container-id-1 label.sk-toggleable__label {cursor: pointer;display: block;width: 100%;margin-bottom: 0;padding: 0.5em;box-sizing: border-box;text-align: center;
90
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:before {/* Arrow on the left of the label */content: "▸";float: left;margin-right: 0.25em;color: var(--sklearn-color-icon);
91
+ }#sk-container-id-1 label.sk-toggleable__label-arrow:hover:before {color: var(--sklearn-color-text);
92
+ }/* Toggleable content - dropdown */#sk-container-id-1 div.sk-toggleable__content {max-height: 0;max-width: 0;overflow: hidden;text-align: left;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
93
+ }#sk-container-id-1 div.sk-toggleable__content.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
94
+ }#sk-container-id-1 div.sk-toggleable__content pre {margin: 0.2em;border-radius: 0.25em;color: var(--sklearn-color-text);/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
95
+ }#sk-container-id-1 div.sk-toggleable__content.fitted pre {/* unfitted */background-color: var(--sklearn-color-fitted-level-0);
96
+ }#sk-container-id-1 input.sk-toggleable__control:checked~div.sk-toggleable__content {/* Expand drop-down */max-height: 200px;max-width: 100%;overflow: auto;
97
+ }#sk-container-id-1 input.sk-toggleable__control:checked~label.sk-toggleable__label-arrow:before {content: "▾";
98
+ }/* Pipeline/ColumnTransformer-specific style */#sk-container-id-1 div.sk-label input.sk-toggleable__control:checked~label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
99
+ }#sk-container-id-1 div.sk-label.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {background-color: var(--sklearn-color-fitted-level-2);
100
+ }/* Estimator-specific style *//* Colorize estimator box */
101
+ #sk-container-id-1 div.sk-estimator input.sk-toggleable__control:checked~label.sk-toggleable__label {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
102
+ }#sk-container-id-1 div.sk-estimator.fitted input.sk-toggleable__control:checked~label.sk-toggleable__label {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
103
+ }#sk-container-id-1 div.sk-label label.sk-toggleable__label,
104
+ #sk-container-id-1 div.sk-label label {/* The background is the default theme color */color: var(--sklearn-color-text-on-default-background);
105
+ }/* On hover, darken the color of the background */
106
+ #sk-container-id-1 div.sk-label:hover label.sk-toggleable__label {color: var(--sklearn-color-text);background-color: var(--sklearn-color-unfitted-level-2);
107
+ }/* Label box, darken color on hover, fitted */
108
+ #sk-container-id-1 div.sk-label.fitted:hover label.sk-toggleable__label.fitted {color: var(--sklearn-color-text);background-color: var(--sklearn-color-fitted-level-2);
109
+ }/* Estimator label */#sk-container-id-1 div.sk-label label {font-family: monospace;font-weight: bold;display: inline-block;line-height: 1.2em;
110
+ }#sk-container-id-1 div.sk-label-container {text-align: center;
111
+ }/* Estimator-specific */
112
+ #sk-container-id-1 div.sk-estimator {font-family: monospace;border: 1px dotted var(--sklearn-color-border-box);border-radius: 0.25em;box-sizing: border-box;margin-bottom: 0.5em;/* unfitted */background-color: var(--sklearn-color-unfitted-level-0);
113
+ }#sk-container-id-1 div.sk-estimator.fitted {/* fitted */background-color: var(--sklearn-color-fitted-level-0);
114
+ }/* on hover */
115
+ #sk-container-id-1 div.sk-estimator:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-2);
116
+ }#sk-container-id-1 div.sk-estimator.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-2);
117
+ }/* Specification for estimator info (e.g. "i" and "?") *//* Common style for "i" and "?" */.sk-estimator-doc-link,
118
+ a:link.sk-estimator-doc-link,
119
+ a:visited.sk-estimator-doc-link {float: right;font-size: smaller;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1em;height: 1em;width: 1em;text-decoration: none !important;margin-left: 1ex;/* unfitted */border: var(--sklearn-color-unfitted-level-1) 1pt solid;color: var(--sklearn-color-unfitted-level-1);
120
+ }.sk-estimator-doc-link.fitted,
121
+ a:link.sk-estimator-doc-link.fitted,
122
+ a:visited.sk-estimator-doc-link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
123
+ }/* On hover */
124
+ div.sk-estimator:hover .sk-estimator-doc-link:hover,
125
+ .sk-estimator-doc-link:hover,
126
+ div.sk-label-container:hover .sk-estimator-doc-link:hover,
127
+ .sk-estimator-doc-link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
128
+ }div.sk-estimator.fitted:hover .sk-estimator-doc-link.fitted:hover,
129
+ .sk-estimator-doc-link.fitted:hover,
130
+ div.sk-label-container:hover .sk-estimator-doc-link.fitted:hover,
131
+ .sk-estimator-doc-link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
132
+ }/* Span, style for the box shown on hovering the info icon */
133
+ .sk-estimator-doc-link span {display: none;z-index: 9999;position: relative;font-weight: normal;right: .2ex;padding: .5ex;margin: .5ex;width: min-content;min-width: 20ex;max-width: 50ex;color: var(--sklearn-color-text);box-shadow: 2pt 2pt 4pt #999;/* unfitted */background: var(--sklearn-color-unfitted-level-0);border: .5pt solid var(--sklearn-color-unfitted-level-3);
134
+ }.sk-estimator-doc-link.fitted span {/* fitted */background: var(--sklearn-color-fitted-level-0);border: var(--sklearn-color-fitted-level-3);
135
+ }.sk-estimator-doc-link:hover span {display: block;
136
+ }/* "?"-specific style due to the `<a>` HTML tag */#sk-container-id-1 a.estimator_doc_link {float: right;font-size: 1rem;line-height: 1em;font-family: monospace;background-color: var(--sklearn-color-background);border-radius: 1rem;height: 1rem;width: 1rem;text-decoration: none;/* unfitted */color: var(--sklearn-color-unfitted-level-1);border: var(--sklearn-color-unfitted-level-1) 1pt solid;
137
+ }#sk-container-id-1 a.estimator_doc_link.fitted {/* fitted */border: var(--sklearn-color-fitted-level-1) 1pt solid;color: var(--sklearn-color-fitted-level-1);
138
+ }/* On hover */
139
+ #sk-container-id-1 a.estimator_doc_link:hover {/* unfitted */background-color: var(--sklearn-color-unfitted-level-3);color: var(--sklearn-color-background);text-decoration: none;
140
+ }#sk-container-id-1 a.estimator_doc_link.fitted:hover {/* fitted */background-color: var(--sklearn-color-fitted-level-3);
141
+ }
142
+ </style><div id="sk-container-id-1" class="sk-top-container" style="overflow: auto;"><div class="sk-text-repr-fallback"><pre>Pipeline(steps=[(&#x27;vectorizer&#x27;,TfidfVectorizer(encoding=&#x27;latin-1&#x27;, min_df=5,ngram_range=(1, 2), sublinear_tf=True)),(&#x27;mnb&#x27;, MultinomialNB())])</pre><b>In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook. <br />On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.</b></div><div class="sk-container" hidden><div class="sk-item sk-dashed-wrapped"><div class="sk-label-container"><div class="sk-label fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-1" type="checkbox" ><label for="sk-estimator-id-1" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;&nbsp;Pipeline<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.pipeline.Pipeline.html">?<span>Documentation for Pipeline</span></a><span class="sk-estimator-doc-link fitted">i<span>Fitted</span></span></label><div class="sk-toggleable__content fitted"><pre>Pipeline(steps=[(&#x27;vectorizer&#x27;,TfidfVectorizer(encoding=&#x27;latin-1&#x27;, min_df=5,ngram_range=(1, 2), sublinear_tf=True)),(&#x27;mnb&#x27;, MultinomialNB())])</pre></div> </div></div><div class="sk-serial"><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-2" type="checkbox" ><label for="sk-estimator-id-2" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;TfidfVectorizer<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html">?<span>Documentation for TfidfVectorizer</span></a></label><div class="sk-toggleable__content fitted"><pre>TfidfVectorizer(encoding=&#x27;latin-1&#x27;, min_df=5, ngram_range=(1, 2),sublinear_tf=True)</pre></div> </div></div><div class="sk-item"><div class="sk-estimator fitted sk-toggleable"><input class="sk-toggleable__control sk-hidden--visually" id="sk-estimator-id-3" type="checkbox" ><label for="sk-estimator-id-3" class="sk-toggleable__label fitted sk-toggleable__label-arrow fitted">&nbsp;MultinomialNB<a class="sk-estimator-doc-link fitted" rel="noreferrer" target="_blank" href="https://scikit-learn.org/1.5/modules/generated/sklearn.naive_bayes.MultinomialNB.html">?<span>Documentation for MultinomialNB</span></a></label><div class="sk-toggleable__content fitted"><pre>MultinomialNB()</pre></div> </div></div></div></div></div></div>
143
+
144
+ ## Evaluation Results
145
+
146
+ [More Information Needed]
147
+
148
+ # How to Get Started with the Model
149
+
150
+ [More Information Needed]
151
+
152
+ # Model Card Authors
153
+
154
+ This model card is written by following authors:
155
+
156
+ [More Information Needed]
157
+
158
+ # Model Card Contact
159
+
160
+ You can contact the model card authors through following channels:
161
+ [More Information Needed]
162
+
163
+ # Citation
164
+
165
+ Below you can find information related to citation.
166
+
167
+ **BibTeX:**
168
+ ```
169
+ [More Information Needed]
170
+ ```
171
+
172
+ # get_started_code
173
+
174
+ import joblib
175
+ wmodel = joblib.load('pipeline_sentiment_analysis.pkl')
176
+
177
+ # model_card_authors
178
+
179
+ Rodrigo Rodrigues do Carmo
180
+
181
+ # limitations
182
+
183
+ This pipeline is for studying purposes only.
184
+
185
+ # model_description
186
+
187
+ This is a pipeline for sentiment analysis trained on the Stanford Twitter dataset.TF-IDF vectorizer is used for vectorization.
config.json CHANGED
@@ -11,7 +11,7 @@
11
  ]
12
  },
13
  "model": {
14
- "file": "model.pkl"
15
  },
16
  "model_format": "pickle",
17
  "task": "text-classification"
 
11
  ]
12
  },
13
  "model": {
14
+ "file": "pipeline_sentiment_analysis.pkl"
15
  },
16
  "model_format": "pickle",
17
  "task": "text-classification"
pipeline_sentiment_analysis.pkl ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:359f956664fb5ccd11247d836d738e753d0779100dcb8cc20a4983902f8feda7
3
+ size 15160974