a2c-AntBulletEnv-v0 / config.json
rodrigoclira's picture
Initial commit
83b9983
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f51641db130>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f51641db1c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f51641db250>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f51641db2e0>", "_build": "<function ActorCriticPolicy._build at 0x7f51641db370>", "forward": "<function ActorCriticPolicy.forward at 0x7f51641db400>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f51641db490>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f51641db520>", "_predict": "<function ActorCriticPolicy._predict at 0x7f51641db5b0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f51641db640>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f51641db6d0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f51641db760>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f51641d5ec0>"}, "verbose": 1, "policy_kwargs": {":type:": "<class 'dict'>", ":serialized:": "gAWVowAAAAAAAAB9lCiMDGxvZ19zdGRfaW5pdJRK/v///4wKb3J0aG9faW5pdJSJjA9vcHRpbWl6ZXJfY2xhc3OUjBN0b3JjaC5vcHRpbS5ybXNwcm9wlIwHUk1TcHJvcJSTlIwQb3B0aW1pemVyX2t3YXJnc5R9lCiMBWFscGhhlEc/764UeuFHrowDZXBzlEc+5Pi1iONo8YwMd2VpZ2h0X2RlY2F5lEsAdXUu", "log_std_init": -2, "ortho_init": false, "optimizer_class": "<class 'torch.optim.rmsprop.RMSprop'>", "optimizer_kwargs": {"alpha": 0.99, "eps": 1e-05, "weight_decay": 0}}, "num_timesteps": 2000000, "_total_timesteps": 2000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1688734795128711287, "learning_rate": 0.00096, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuCQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz9PdRBNVR1phZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAADf8VT/On4A/7OZSvz8TRD8yzgM/ZbcHwE2Tnr/b942/fZMpPz0Tg71sl9W8UwKUP+Q0oDyi6fC/suKGP8wuGT94pCo/SNkxwE8KSL9F3pO/raBTv9hbbD+BZjE/DPDMv1dYRr88pSU/RD2ZPq09vr96KNW+Ce2vPwkp+r9tebk/HDaqP3ujHb84Jh49HfaPviVXtz/EGEe/HtOrP+L3gr0uXni/69sxPyrs0L1BJ62/LgKDvjyU0T4C8g0/0KCkPHJCmT+eCbu/2IdpPgfiCUD/NKU/PKUlP0Q9mT6tPb6/fJCPPx1epr9IBmg/HzuWPwcAoz9uDH0/KREqPxgFur9/s8g/9XpRP5XpgD2w1ru/PvMyP8bKyz/z9Ic9AfCSPy0NK0Df2je9P7AVPjpuvT/WGbq/O/kLOreL6j/M7MO+V1hGvzylJT9EPZk+pz4sP/EOfj1knTQ+IrmrPvkL5D+kmw0/x1QLvgwPp79OudG/5RCgP0qNCMBV/T0/CzcjQMyy1r/eNsI6tDc2PxIVYL8cSe4+T2jiv2JfWj7A4i5A4tO9Py+jGb6U5Zo9TkThPv80pT88pSU/RD2ZPq09vr+UjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYEAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwSFlIwBQ5R0lFKULg=="}, "_last_original_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVNQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJbAAQAAAAAAAAAAAACUKoU2AACAPwAAAAAAAAAAAAAAAAAAAAAAAACAuakgvQAAAACEGwHAAAAAAAEPJT0AAAAAfybqPwAAAAAspq49AAAAAP4Z2j8AAAAAGAL/uwAAAADNeuK/AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAcbQJtgAAgD8AAAAAAAAAAAAAAAAAAAAAAAAAgIQK570AAAAAOYrvvwAAAACUBBG8AAAAAAwK8z8AAAAAbUravQAAAAAAOQFAAAAAAGnwpz0AAAAAM/XqvwAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAISMLcAAIA/AAAAAAAAAAAAAAAAAAAAAAAAAIB9Csk9AAAAAGed9r8AAAAAp6oMvgAAAACM5uY/AAAAAPKM0b0AAAAADT3xPwAAAAA29Ok9AAAAALzPAMAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACGG4o1AACAPwAAAAAAAAAAAAAAAAAAAAAAAACADO+jvQAAAAAtFfC/AAAAAOqgWL0AAAAAGGXuPwAAAAAwJOw9AAAAALPQ5T8AAAAAvTa9PQAAAAAXbv2/AAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJmNJSJiIeUUpQoSwOMATyUTk5OSv////9K/////0sAdJRiSwRLHIaUjAFDlHSUUpQu"}, "_episode_num": 0, "use_sde": true, "sde_sample_freq": -1, "_current_progress_remaining": 0.0, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVRAwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQJ+/xGQSzxCMAWyUTegDjAF0lEdAq2nduUD+znV9lChoBkdAoHWHQpnYhGgHTegDaAhHQKtvrTaTOgR1fZQoaAZHQJ8r+PQv6CVoB03oA2gIR0CrcMniWE9MdX2UKGgGR0CfxPoGY8dQaAdN6ANoCEdAq3HJsXSBsnV9lChoBkdAn215BomG/WgHTegDaAhHQKt5tCIDYAd1fZQoaAZHQJ52fcvduYRoB03oA2gIR0CrfjNRWLgodX2UKGgGR0CZ1m/zreImaAdN6ANoCEdAq39ZzBAOa3V9lChoBkdAnnzs/dIoVmgHTegDaAhHQKuAWiTMaCN1fZQoaAZHQJ6eC7GvOhVoB03oA2gIR0Cripus1baAdX2UKGgGR0CeNL1IiC8OaAdN6ANoCEdAq5A43tKIznV9lChoBkdAnkptWp6yB2gHTegDaAhHQKuRXAood+51fZQoaAZHQJ50HZQHiWFoB03oA2gIR0CrklT4tYjjdX2UKGgGR0CgPxH3ta6jaAdN6ANoCEdAq5nPL1VYIXV9lChoBkdAn8dRkVeruWgHTegDaAhHQKud/Sl3yI51fZQoaAZHQKCp/lmvnr9oB03oA2gIR0CrnxiZnctYdX2UKGgGR0Cf1zbNbC79aAdN6ANoCEdAq6AafnOjZnV9lChoBkdAnE9pXQtz0mgHTegDaAhHQKuqAPq9oOB1fZQoaAZHQKBABXIU8FJoB03oA2gIR0Crr8wzDXOGdX2UKGgGR0CgrnHLRrrPaAdN6ANoCEdAq7DlIGyHEnV9lChoBkdAnVwbn9vS+mgHTegDaAhHQKux34nndO91fZQoaAZHQKEAJ7VrhzhoB03oA2gIR0CruT/tQbdadX2UKGgGR0CgoEN5UtI1aAdN6ANoCEdAq72HOSntOXV9lChoBkdAoIUFY6nzhGgHTegDaAhHQKu+pwbVBld1fZQoaAZHQKDdfQokRjBoB03oA2gIR0Crv6egte2NdX2UKGgGR0Cg6gekHlfaaAdN6ANoCEdAq8lDjrAxjHV9lChoBkdAoROIsAeaKGgHTegDaAhHQKvPihCdBjZ1fZQoaAZHQKEFHuNPxhFoB03oA2gIR0Cr0K24EwFldX2UKGgGR0Cg5vWll9SdaAdN6ANoCEdAq9GrMotth3V9lChoBkdAmjhF/2Cd0GgHTegDaAhHQKvY/g4Otnx1fZQoaAZHQKAS0UJv5xloB03oA2gIR0Cr3Td9Ujs2dX2UKGgGR0Cg2sQPI4lyaAdN6ANoCEdAq95L8pCrtHV9lChoBkdAoITE5sCT2WgHTegDaAhHQKvfR5SFXaJ1fZQoaAZHQJ6PDHp8neBoB03oA2gIR0Cr6HCrLhaUdX2UKGgGR0CgUonNHH3laAdN6ANoCEdAq+7tbiZOSHV9lChoBkdAn19zT4L1EmgHTegDaAhHQKvwH41xbSt1fZQoaAZHQKDkTeKsMiNoB03oA2gIR0Cr8RnXd0q6dX2UKGgGR0CeT4ljVhCuaAdN6ANoCEdAq/iKnzg/DHV9lChoBkdAoAu/NLUTc2gHTegDaAhHQKv8r3mFJxx1fZQoaAZHQJ2KNrN4Z/FoB03oA2gIR0Cr/c9KVY6odX2UKGgGR0CcU2jJ+2E1aAdN6ANoCEdAq/7LRc/t6XV9lChoBkdAnhAPPw/gSGgHTegDaAhHQKwHg85jpcJ1fZQoaAZHQJ4+qm2sq8VoB03oA2gIR0CsDeFSjxkNdX2UKGgGR0CfsNb/wRXfaAdN6ANoCEdArA/N38n/k3V9lChoBkdAoBgU0BOpKmgHTegDaAhHQKwRO4Nqgyx1fZQoaAZHQJ3s3o+wC8xoB03oA2gIR0CsG9vZyuIRdX2UKGgGR0CgkER5C4SZaAdN6ANoCEdArB/zdSEUTXV9lChoBkdAn8t2znied2gHTegDaAhHQKwhDM0P6Kt1fZQoaAZHQJ/PABU70WdoB03oA2gIR0CsIgQr+YMOdX2UKGgGR0CfL+1+y7f6aAdN6ANoCEdArCwxaA4GU3V9lChoBkdAn4mCmALApWgHTegDaAhHQKwxl91EE1V1fZQoaAZHQKC5z2AXl8xoB03oA2gIR0CsMqjWsijddX2UKGgGR0CggeL5IpYtaAdN6ANoCEdArDOcny/bkHV9lChoBkdAnjSAR5C4SmgHTegDaAhHQKw65Xko4Mp1fZQoaAZHQJs6tChN/ONoB03oA2gIR0CsPxSlFc6edX2UKGgGR0CaddJA+pwTaAdN6ANoCEdArEAqc0+C9XV9lChoBkdAnFdiOinHemgHTegDaAhHQKxBH3ztkWh1fZQoaAZHQJ9p5IczZYhoB03oA2gIR0CsSqlxOtW/dX2UKGgGR0CgwU6+nIhhaAdN6ANoCEdArFBq/dqL0nV9lChoBkdAoFOEA/9pAWgHTegDaAhHQKxRdUDuBtl1fZQoaAZHQKBqwFJQLuxoB03oA2gIR0CsUmXzUZvUdX2UKGgGR0Cfaj/cWTHKaAdN6ANoCEdArFl3HtF8X3V9lChoBkdAnpoIDoyKvWgHTegDaAhHQKxdaNkOI691fZQoaAZHQKADARISUTtoB03oA2gIR0CsXm+6Zpi7dX2UKGgGR0CgTvv5P/JeaAdN6ANoCEdArF9blaKUFHV9lChoBkdAoEGaxeLNwGgHTegDaAhHQKxnt2OhkAh1fZQoaAZHQKBqmRBeHBVoB03oA2gIR0CsbekkB0ZFdX2UKGgGR0Cf8CoJzDGcaAdN6ANoCEdArG9zFfiPyXV9lChoBkdAnzjy9ytFKGgHTegDaAhHQKxwYLF4s3B1fZQoaAZHQJ1IttXPqs5oB03oA2gIR0Csd14NI9TxdX2UKGgGR0CgxuKRlpXZaAdN6ANoCEdArHtIi1RceXV9lChoBkdAoR6EJtzjm2gHTegDaAhHQKx8VzCDVYp1fZQoaAZHQKBr1hTfixVoB03oA2gIR0CsfUTl90A+dX2UKGgGR0ChWDKFqSHNaAdN6ANoCEdArITpda+vhnV9lChoBkdAoRTJa5f+j2gHTegDaAhHQKyLAO938oB1fZQoaAZHQIe/O1Bt1p1oB03oA2gIR0CsjKtlRP43dX2UKGgGR0CgzOBW5paiaAdN6ANoCEdArI4g482aUnV9lChoBkdAoUWoWFev6mgHTegDaAhHQKyVXYuCf6J1fZQoaAZHQJ90HmyPdVNoB03oA2gIR0CsmVlz+3pfdX2UKGgGR0Cg7c9cSoOyaAdN6ANoCEdArJpkPBi1A3V9lChoBkdAoK36UornT2gHTegDaAhHQKybU3d9Dx91fZQoaAZHQKB8iKhtcfNoB03oA2gIR0CsoloBikO7dX2UKGgGR0CgQ9PTG5tnaAdN6ANoCEdArKfvjsD4g3V9lChoBkdAn1dYIKMNt2gHTegDaAhHQKypmjC53C91fZQoaAZHQKDHLUS7GvRoB03oA2gIR0CsqxFM7EHddX2UKGgGR0CgyxAoXsPbaAdN6ANoCEdArLNibYsd1nV9lChoBkdAoK6O8wpOOGgHTegDaAhHQKy3XwF1SwZ1fZQoaAZHQJ6rWTxG2CxoB03oA2gIR0CsuGkUCaJAdX2UKGgGR0CgzXRN7BwdaAdN6ANoCEdArLlUzhxYJXV9lChoBkdAnz3zS5RTCWgHTegDaAhHQKzAQEal1r91fZQoaAZHQJ9pllRP421oB03oA2gIR0CsxP6guh9LdX2UKGgGR0CfVpLThHbzaAdN6ANoCEdArMZ+96C17nV9lChoBkdAn6vaQ7tAs2gHTegDaAhHQKzH6oCuEEl1fZQoaAZHQJ2hWSzPa+NoB03oA2gIR0Cs0NGWt2cKdX2UKGgGR0CdhTN0NjLCaAdN6ANoCEdArNTB37k4m3V9lChoBkdAmdYQzP8htGgHTegDaAhHQKzVzlar3kB1fZQoaAZHQJqDQo5PuXxoB03oA2gIR0Cs1sCtq59WdX2UKGgGR0CSSFnjQzDXaAdN6ANoCEdArN3PS6UaAHV9lChoBkdAla4yx3V092gHTegDaAhHQKzh6RpUPxx1fZQoaAZHQJgZfnV5KOFoB03oA2gIR0Cs42956dDqdX2UKGgGR0CbBtrRBu4xaAdN6ANoCEdArOTCArhBJXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 62500, "n_steps": 8, "gamma": 0.99, "gae_lambda": 0.9, "ent_coef": 0.0, "vf_coef": 0.4, "max_grad_norm": 0.5, "normalize_advantage": false, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVbQIAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLHIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWcAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/lGgLSxyFlIwBQ5R0lFKUjARoaWdolGgTKJZwAAAAAAAAAAAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAfwAAgH+UaAtLHIWUaBZ0lFKUjA1ib3VuZGVkX2JlbG93lGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLHIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYcAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUaCJLHIWUaBZ0lFKUjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "_shape": [28], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf\n -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf inf\n inf inf inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "bounded_above": "[False False False False False False False False False False False False\n False False False False False False False False False False False False\n False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVpQEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAIC/AACAvwAAgL8AAIC/AACAvwAAgL8AAIC/AACAv5RoC0sIhZSMAUOUdJRSlIwEaGlnaJRoEyiWIAAAAAAAAAAAAIA/AACAPwAAgD8AAIA/AACAPwAAgD8AAIA/AACAP5RoC0sIhZRoFnSUUpSMDWJvdW5kZWRfYmVsb3eUaBMolggAAAAAAAAAAQEBAQEBAQGUaAiMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBZ0lFKUjA1ib3VuZGVkX2Fib3ZllGgTKJYIAAAAAAAAAAEBAQEBAQEBlGgiSwiFlGgWdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-1. -1. -1. -1. -1. -1. -1. -1.]", "high": "[1. 1. 1. 1. 1. 1. 1. 1.]", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_np_random": null}, "n_envs": 4, "system_info": {"OS": "Linux-5.15.107+-x86_64-with-glibc2.31 # 1 SMP Sat Apr 29 09:15:28 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "1.8.0", "PyTorch": "2.0.1+cu118", "GPU Enabled": "True", "Numpy": "1.22.4", "Gym": "0.21.0"}}