ppo-LunarLander-v2 / config.json
rodeoFlip's picture
Upload PPO LunarLander-v2 trained agent
c36fe01 verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7ab33070b5b0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7ab33070b640>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7ab33070b6d0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7ab33070b760>", "_build": "<function ActorCriticPolicy._build at 0x7ab33070b7f0>", "forward": "<function ActorCriticPolicy.forward at 0x7ab33070b880>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7ab33070b910>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7ab33070b9a0>", "_predict": "<function ActorCriticPolicy._predict at 0x7ab33070ba30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7ab33070bac0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7ab33070bb50>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7ab33070bbe0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7ab330711100>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1714508351130373618, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAMVG6r63GAQ/vFsTvF81tL5YF5y+ZozfPQAAAAAAAAAAAGk9vYw0RT4qPZ4+8uL0vcPOmT0HkqK8AAAAAAAAAAAaOGc+xOJoP3qLib1Mtn2+7eLgPUjbWb0AAAAAAAAAAEC9SD4twlg/delevY2pl75TjqE99YV0vQAAAAAAAAAAM3lBPMNVJbqaHaC4IgzMMkWSFLsub7o3AACAPwAAgD/NvF+7MI28P9cVSr32HKE+Crp+O6L6NDwAAAAAAAAAAGYl9z0/dDk/N/envav8m74a9km6jlgBvQAAAAAAAAAAk9sOPuXhjT/d+Po+UjXqvuV11Dz6oRo+AAAAAAAAAABmc8Y84k0NP9ZB072nC4K+XbOKvR4SJTwAAAAAAAAAAM0qo7zsEfa5+Z4cNmm6IDHdSG87/+ZItQAAgD8AAIA/ANiovNIejbtaQyY8uv7TPNcV9ryjNLE9AACAPwAAgD/z8KE9l8twPy05z70ssIC+CZsRPWy9Lb4AAAAAAAAAAECBj72ue6S6nd8AO2rEqjjPBXy7b7WhNwAAgD8AAIA/s0q0PdcCVbsd/1K8JfahPJVAsrx55Ik9AACAPwAAAABTWR++qqSIP8U1Y75CDbK+rZw3vlJ/O7wAAAAAAAAAAI2Hqz2PCi26qlpDsyRE+KvvJQ07w6PRMwAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG8k2f029+SMAWyUTXABjAF0lEdAl6BbcO9WZXV9lChoBkdAcBvd6LOzIGgHTScBaAhHQJe1IgbIcR11fZQoaAZHQG7MzT4L1EpoB01xAWgIR0CXtYGm1pj+dX2UKGgGR0BsWDzkIX0oaAdNJwFoCEdAl7YnsPatcXV9lChoBkdAcZwQZXMhYGgHTUIBaAhHQJe2Wm8/Uvx1fZQoaAZHQHE40uL74ztoB01VAWgIR0CXt0R+z+m4dX2UKGgGR0Bw4dkGzKLbaAdNTgFoCEdAl7jMkt29tnV9lChoBkdAcZhQUHpr12gHTSMBaAhHQJe41h4MWoF1fZQoaAZHQG5CsEA5q/NoB01CAWgIR0CXubRyfcvedX2UKGgGR0BwDoCOmzjWaAdNHAFoCEdAl7noht+CsnV9lChoBkdAbRgpRXOnmGgHTTwBaAhHQJe6J2OhkAh1fZQoaAZHQG9JSM1jy4FoB01HAWgIR0CXuiLcbiqAdX2UKGgGR0BxDRcSoOx0aAdNTgFoCEdAl7+8D8tPHnV9lChoBkdAcIHRl6JIlWgHTQwBaAhHQJfABgb6xgR1fZQoaAZHQHAjIz7/GVBoB010AWgIR0CXwoCNjslcdX2UKGgGR0BwEFivxH5KaAdNUgFoCEdAl8K6AOJ+D3V9lChoBkdAchxrnDBMz2gHTV4BaAhHQJfCyFSKm9B1fZQoaAZHQHDhulj3EhtoB032AWgIR0CXwx4smOU/dX2UKGgGR0BwdxEofCAMaAdNKwFoCEdAl8OQN9YwI3V9lChoBkdAcKdEcbR4QmgHTU8BaAhHQJfEkq9XcQB1fZQoaAZHQG76GhmGucNoB01dAWgIR0CXxjHiFTNudX2UKGgGR0BwJ3gMtseoaAdNFgFoCEdAl8ZBF3IMjXV9lChoBkdAckFy6tknTmgHTUMBaAhHQJfGZnVXmvJ1fZQoaAZHQHHWjXnQpnZoB00NAWgIR0CXxtRP420idX2UKGgGR0Bwm/0/W1+iaAdNVgFoCEdAl8g2AskIHHV9lChoBkdAbyf3os7MgWgHTUgBaAhHQJfIwt03fhx1fZQoaAZHQHI3cMI/qxFoB01GAWgIR0CXyO5zo2XLdX2UKGgGR0Buhiqp97WvaAdNXQFoCEdAl8m0mdAgPnV9lChoBkdAcVOrFwT/Q2gHTSkBaAhHQJfMJ0ZFXq91fZQoaAZHQHK4hWYF7ldoB00OAWgIR0CXzSZiuuA7dX2UKGgGR0BrLVqtYB/7aAdNIwFoCEdAl82Z1RtP6HV9lChoBkdAcGqTTfBN22gHTTEBaAhHQJfOUcuJ1q51fZQoaAZHQHEsRv3rUspoB01lAWgIR0CXzqgBLf1pdX2UKGgGR0BzIfFERaouaAdNKQFoCEdAl888GorFwXV9lChoBkdAcEZTHKfWc2gHTTYBaAhHQJfQ3PGACnx1fZQoaAZHQG30fXGwRoRoB01JAWgIR0CX0Z+GXXyzdX2UKGgGR0By5et4iX6ZaAdNeQFoCEdAl9G6jWTX8XV9lChoBkdAcUYQIUrTY2gHTT8BaAhHQJfTv0Gu9vl1fZQoaAZHQHEEnu3MINVoB02EAWgIR0CX1BkMCtA+dX2UKGgGR0BrnM52hZhbaAdNLAFoCEdAl9S82NvOyHV9lChoBkdAcXRF36hxpGgHTU8BaAhHQJfVHkT6BRR1fZQoaAZHQG+2KWkadc1oB00lAWgIR0CX12UkOZssdX2UKGgGR0Ajup97WuoxaAdL/GgIR0CX2FyM1jy4dX2UKGgGR0ByEbksBhhIaAdNJAFoCEdAl9jjK9wm3XV9lChoBkdAa3ymuTzNEGgHTTUBaAhHQJfZLnied091fZQoaAZHQHEHlhPTG5toB00tAWgIR0CX2eubqhUSdX2UKGgGR0Bw3v+VC5VfaAdN1gFoCEdAl9omBBiTdXV9lChoBkdAcAg3n6l+E2gHTToCaAhHQJfbUsbvPTp1fZQoaAZHQEUWnm7rcCZoB00JAWgIR0CX28MPSUkfdX2UKGgGR0Bx2htzjm0WaAdNWAFoCEdAl9xv642CNHV9lChoBkdAcH1u27Wd3GgHTTwBaAhHQJfx0dxQzk91fZQoaAZHQHDN6VQhwERoB01wAWgIR0CX85pV0cOtdX2UKGgGR0ByKTfzjFQ3aAdNOQFoCEdAl/UETpPhynV9lChoBkdAb/0qp97Wu2gHTSsBaAhHQJf1MeXAuZl1fZQoaAZHQG5azijtXxRoB01NAWgIR0CX9ZBmf5DadX2UKGgGR0Bx4hLh73PBaAdNDQFoCEdAl/cyDdxhlXV9lChoBkdAcZrjnV5KOGgHTUoBaAhHQJf3QHX2/SJ1fZQoaAZHQHCr3solUqBoB00aAWgIR0CX+YDEm6XjdX2UKGgGR0BtzrJOnEVGaAdNEwFoCEdAl/nzBl+VknV9lChoBkdAb//F0gbIcWgHTUgBaAhHQJf67sUqQRx1fZQoaAZHQHF/OLFXJYFoB02QA2gIR0CX+xsxwhnrdX2UKGgGR0Byusqz7di2aAdNSgFoCEdAl/2WwiaAnXV9lChoBkdAcghWOp84P2gHTXkBaAhHQJf+EFlkH2R1fZQoaAZHQHHPCV4X40xoB01CAWgIR0CX/lE/jbSJdX2UKGgGR0BwX1kqc3ERaAdNXwFoCEdAl/7KESM983V9lChoBkdASAKE384xUWgHS/RoCEdAmACG78Nx2nV9lChoBkdAcahvC/GlymgHTWMBaAhHQJgAuI7/4qR1fZQoaAZHQHJbv863iJhoB000AWgIR0CYAS4IKMNudX2UKGgGR0BxtEsOG0u2aAdNYgFoCEdAmAH/a+N96XV9lChoBkdAa2SKb8WKuWgHTU4BaAhHQJgCWq4pc5d1fZQoaAZHQGwvGvwEyL1oB01VAWgIR0CYAtgUUO/ddX2UKGgGR0BCLiQT238XaAdL+mgIR0CYA0DTz/ZNdX2UKGgGR0BxzRfICEHuaAdNQAFoCEdAmANN2ovSMXV9lChoBkdAcpyn7Hhjv2gHTRIBaAhHQJgDl/Aj6ep1fZQoaAZHQG4n7jtG/etoB01TAWgIR0CYB41Vo6CEdX2UKGgGR0BtYCEWZZ0TaAdNJwFoCEdAmAhkWykbgnV9lChoBkdAbb+8wpON52gHTXUBaAhHQJgItFUhmoR1fZQoaAZHQG6kr0Bfa6BoB003AWgIR0CYCbtZmqYJdX2UKGgGR0BwNAfIS13MaAdN8QJoCEdAmAowLeANG3V9lChoBkdAcZoMvysjmmgHTU8BaAhHQJgKY7eVLSN1fZQoaAZHQHC/QIppeu5oB002AWgIR0CYDD4Vh1DCdX2UKGgGR0BulBvm5lOHaAdNdwFoCEdAmAz0SZjQRnV9lChoBkdAbrb29L6DXmgHTV0BaAhHQJgN/aYeDFt1fZQoaAZHQG/AfMW43FVoB00kAWgIR0CYDf5ZKWcCdX2UKGgGR0BtR22NNrTIaAdNNwFoCEdAmA4mKQ7tA3V9lChoBkdAcRINKh+OO2gHTRwBaAhHQJgOLKcNH6N1fZQoaAZHQHIoK+SKWLRoB01ZAWgIR0CYDkR8twrEdX2UKGgGR0BsqtnkDIRzaAdNUwFoCEdAmA6ghB7eEnV9lChoBkdAUjTLTx5LRWgHTSYBaAhHQJgOs3kxREZ1fZQoaAZHQG29TGPxQSBoB01DAWgIR0CYDxvF3pwCdX2UKGgGR0ByG9PUKArhaAdNGQFoCEdAmBIp3s5XEXV9lChoBkdAcNZkH2RJVmgHTU0BaAhHQJgTR56dDpl1fZQoaAZHQHHIgJHAh0RoB00xAWgIR0CYFHTl1bJPdX2UKGgGR0Bs4MeXAuZkaAdNMwFoCEdAmBVcJQcghnV9lChoBkdAb0FOLR8c/GgHTWABaAhHQJgVZ8rqdH51fZQoaAZHQFPeyAQQL/loB00CAWgIR0CYFcikwevIdX2UKGgGR0BvirWqcVgyaAdNUgFoCEdAmBZLdepn6HV9lChoBkdAcUxptaY/mmgHTTcBaAhHQJgXDe7+T/11fZQoaAZHQHAjMc+7lJZoB00iAWgIR0CYF+o7V8TjdX2UKGgGR0Bw5pO1v2oOaAdNMQFoCEdAmBi2hIvrW3VlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 248, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.58+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Sat Nov 18 15:31:17 UTC 2023", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.2.1+cu121", "GPU Enabled": "True", "Numpy": "1.25.2", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}