rod16 commited on
Commit
5192aa6
1 Parent(s): b21472a

update model card README.md

Browse files
Files changed (1) hide show
  1. README.md +77 -0
README.md ADDED
@@ -0,0 +1,77 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ base_model: distilbert-base-uncased
4
+ tags:
5
+ - generated_from_trainer
6
+ datasets:
7
+ - imdb
8
+ metrics:
9
+ - accuracy
10
+ - f1
11
+ model-index:
12
+ - name: v1_finetuning-sentiment-model-3000-samples
13
+ results:
14
+ - task:
15
+ name: Text Classification
16
+ type: text-classification
17
+ dataset:
18
+ name: imdb
19
+ type: imdb
20
+ config: plain_text
21
+ split: test
22
+ args: plain_text
23
+ metrics:
24
+ - name: Accuracy
25
+ type: accuracy
26
+ value: 0.8733333333333333
27
+ - name: F1
28
+ type: f1
29
+ value: 0.8766233766233766
30
+ ---
31
+
32
+ <!-- This model card has been generated automatically according to the information the Trainer had access to. You
33
+ should probably proofread and complete it, then remove this comment. -->
34
+
35
+ # v1_finetuning-sentiment-model-3000-samples
36
+
37
+ This model is a fine-tuned version of [distilbert-base-uncased](https://huggingface.co/distilbert-base-uncased) on the imdb dataset.
38
+ It achieves the following results on the evaluation set:
39
+ - Loss: 0.3156
40
+ - Accuracy: 0.8733
41
+ - F1: 0.8766
42
+
43
+ ## Model description
44
+
45
+ More information needed
46
+
47
+ ## Intended uses & limitations
48
+
49
+ More information needed
50
+
51
+ ## Training and evaluation data
52
+
53
+ More information needed
54
+
55
+ ## Training procedure
56
+
57
+ ### Training hyperparameters
58
+
59
+ The following hyperparameters were used during training:
60
+ - learning_rate: 2e-05
61
+ - train_batch_size: 16
62
+ - eval_batch_size: 16
63
+ - seed: 42
64
+ - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
65
+ - lr_scheduler_type: linear
66
+ - num_epochs: 2
67
+
68
+ ### Training results
69
+
70
+
71
+
72
+ ### Framework versions
73
+
74
+ - Transformers 4.31.0
75
+ - Pytorch 2.0.1+cu118
76
+ - Datasets 2.13.1
77
+ - Tokenizers 0.13.3