robotics-diffusion-transformer
commited on
Upload openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/processing_prismatic.py
Browse files
openvla-7b+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug+example_dataset+b16+lr-0.0005+lora-r32+dropout-0.0--image_aug/processing_prismatic.py
ADDED
@@ -0,0 +1,257 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
"""
|
2 |
+
processing_prismatic.py
|
3 |
+
|
4 |
+
HuggingFace-style preprocessor definitions for Prismatic VLMs, inheriting from `ProcessorMixin`. Default configuration
|
5 |
+
specifies `siglip-224px+7b`.
|
6 |
+
"""
|
7 |
+
|
8 |
+
from typing import Any, ClassVar, List, Optional, Tuple, Union
|
9 |
+
|
10 |
+
import timm.data
|
11 |
+
import torch
|
12 |
+
import torchvision.transforms.functional as TVF
|
13 |
+
from PIL import Image
|
14 |
+
from torchvision.transforms import CenterCrop, Compose, Normalize, Resize, ToTensor
|
15 |
+
from transformers import PreTrainedTokenizerBase
|
16 |
+
from transformers.image_processing_utils import BatchFeature, ImageProcessingMixin
|
17 |
+
from transformers.processing_utils import ProcessorMixin
|
18 |
+
from transformers.tokenization_utils import PaddingStrategy, PreTokenizedInput, TextInput, TruncationStrategy
|
19 |
+
from transformers.utils import TensorType
|
20 |
+
|
21 |
+
|
22 |
+
# === Image Processing ===
|
23 |
+
def letterbox_pad_transform(image: Image.Image, padding_fill_value: Tuple[int, int, int]) -> Image.Image:
|
24 |
+
"""Given a PIL.Image, pad to square by adding a symmetric border around the height/width."""
|
25 |
+
(w, h), max_wh = image.size, max(image.size)
|
26 |
+
horizontal_pad, vertical_pad = int((max_wh - w) / 2), int((max_wh - h) / 2)
|
27 |
+
padding = (horizontal_pad, vertical_pad, horizontal_pad, vertical_pad)
|
28 |
+
|
29 |
+
return TVF.pad(image, padding, fill=padding_fill_value, padding_mode="constant")
|
30 |
+
|
31 |
+
|
32 |
+
class PrismaticImageProcessor(ImageProcessingMixin):
|
33 |
+
model_input_names: ClassVar[List[str]] = ["pixel_values"]
|
34 |
+
|
35 |
+
def __init__(
|
36 |
+
self,
|
37 |
+
use_fused_vision_backbone: bool = False,
|
38 |
+
image_resize_strategy: str = "letterbox",
|
39 |
+
input_sizes: Optional[List[Tuple[int, int, int]]] = None,
|
40 |
+
interpolations: Optional[List[str]] = None,
|
41 |
+
means: Optional[List[Tuple[float, float, float]]] = None,
|
42 |
+
stds: Optional[List[Tuple[float, float, float]]] = None,
|
43 |
+
**kwargs: str,
|
44 |
+
) -> None:
|
45 |
+
"""
|
46 |
+
Initialize a PrismaticImageProcessor as a wrapper around a torchvision transform; this transform will be
|
47 |
+
created by TIMM, and edited to follow our custom `image_resize_strategy` logic.
|
48 |
+
|
49 |
+
@param use_fused_vision_backbone: Boolean indicating single or fused (dual) vision backbone
|
50 |
+
@param image_resize_strategy: Prismatic image resize strategy in < resize-naive | resize-crop | letterbox >
|
51 |
+
@param input_size: [TIMM :: `data_cfg`] Input image size as tuple (channels, width, height)
|
52 |
+
@param interpolation: [TIMM :: `data_cfg`] Interpolation as string (default: "bicubic")
|
53 |
+
@param mean: [TIMM :: `data_cfg`] Normalization mean as float tuple (or two-tuple if `fused_backbone`)
|
54 |
+
@param std: [TIMM :: `data_cfg`] Normalization std as float tuple (or two-tuple if `fused_backbone`)
|
55 |
+
"""
|
56 |
+
self.use_fused_vision_backbone = use_fused_vision_backbone
|
57 |
+
self.image_resize_strategy = image_resize_strategy
|
58 |
+
|
59 |
+
# Handle `None` default values
|
60 |
+
input_sizes = [(3, 224, 224)] if input_sizes is None else input_sizes
|
61 |
+
means = [(0.5, 0.5, 0.5)] if means is None else means
|
62 |
+
stds = [(0.5, 0.5, 0.5)] if stds is None else stds
|
63 |
+
|
64 |
+
# TIMM `data_cfg` Parameters
|
65 |
+
self.input_sizes, self.interpolations, self.means, self.stds = input_sizes, interpolations, means, stds
|
66 |
+
|
67 |
+
# Grab torchvision transforms via TIMM =>> need to parse for specific "functional" transform values!
|
68 |
+
self.tvf_resize_params, self.tvf_crop_params, self.tvf_normalize_params = [], [], []
|
69 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
70 |
+
|
71 |
+
for idx in range(len(input_sizes)):
|
72 |
+
transform = timm.data.create_transform(
|
73 |
+
input_size=self.input_sizes[idx],
|
74 |
+
interpolation=self.interpolations[idx],
|
75 |
+
mean=self.means[idx],
|
76 |
+
std=self.stds[idx],
|
77 |
+
crop_pct=1.0, # Set to 1.0 to ignore cropping (initial Resize sets `input_size`)
|
78 |
+
crop_mode="center", # Default crop mode -- no-op when `crop_pct == 1.0`
|
79 |
+
is_training=False, # No image augmentations when loading the transform!
|
80 |
+
)
|
81 |
+
|
82 |
+
# [Validation] Ensure appropriate transform structure, expected sizes
|
83 |
+
if not (
|
84 |
+
isinstance(transform, Compose)
|
85 |
+
and (len(transform.transforms) == 4)
|
86 |
+
and isinstance(transform.transforms[0], Resize)
|
87 |
+
and isinstance(transform.transforms[1], CenterCrop)
|
88 |
+
and isinstance(transform.transforms[2], ToTensor)
|
89 |
+
and isinstance(transform.transforms[3], Normalize)
|
90 |
+
and (transform.transforms[0].size == self.input_sizes[idx][-1])
|
91 |
+
and (transform.transforms[1].size == self.input_sizes[idx][-2:])
|
92 |
+
):
|
93 |
+
raise ValueError(f"Unexpected TIMM image transformation structure/sizes: `{transform}`")
|
94 |
+
|
95 |
+
# HF Image Processors *must* be JSON-serializable; as such, cannot have torchvision. as an attribute.
|
96 |
+
# => Instead, we're going to parse the transform and call "torchvision.transforms.functional" (`tvf`)
|
97 |
+
resize_t, crop_t, norm_t = transform.transforms[0], transform.transforms[1], transform.transforms[3]
|
98 |
+
self.tvf_resize_params.append(
|
99 |
+
{
|
100 |
+
"size": resize_t.size,
|
101 |
+
"interpolation": TVF.pil_modes_mapping[resize_t.interpolation],
|
102 |
+
"max_size": None,
|
103 |
+
"antialias": True,
|
104 |
+
}
|
105 |
+
)
|
106 |
+
self.tvf_crop_params.append({"output_size": crop_t.size})
|
107 |
+
self.tvf_normalize_params.append(
|
108 |
+
{
|
109 |
+
"mean": norm_t.mean.float().numpy().tolist(),
|
110 |
+
"std": norm_t.std.float().numpy().tolist(),
|
111 |
+
"inplace": False,
|
112 |
+
}
|
113 |
+
)
|
114 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = False, None
|
115 |
+
|
116 |
+
# Handle Prismatic `image_resize_strategy`
|
117 |
+
if self.image_resize_strategy == "resize-naive":
|
118 |
+
self.tvf_resize_params[idx]["size"] = (resize_t.size, resize_t.size)
|
119 |
+
elif self.image_resize_strategy == "letterbox":
|
120 |
+
self.tvf_do_letterbox, self.tvf_letterbox_fill = True, tuple([int(x * 255) for x in self.means[idx]])
|
121 |
+
elif self.image_resize_strategy == "resize-crop":
|
122 |
+
pass
|
123 |
+
else:
|
124 |
+
raise ValueError(f"Image resize strategy `{self.image_resize_strategy}` is not supported!")
|
125 |
+
|
126 |
+
# Dispatch **kwargs to super()
|
127 |
+
super().__init__(**kwargs)
|
128 |
+
|
129 |
+
def apply_transform(self, img: Image.Image) -> torch.Tensor:
|
130 |
+
"""Apply `functional` variant of TIMM's Transform = Compose([Resize -> CenterCrop -> ToTensor -> Normalize])"""
|
131 |
+
if self.tvf_do_letterbox:
|
132 |
+
img = letterbox_pad_transform(img, self.tvf_letterbox_fill)
|
133 |
+
|
134 |
+
# [Contract] Fused Backbones expect "channel-stacked" inputs; we'll unpack on the model side!
|
135 |
+
imgs_t = []
|
136 |
+
for idx in range(len(self.input_sizes)):
|
137 |
+
img_idx = TVF.resize(img, **self.tvf_resize_params[idx])
|
138 |
+
img_idx = TVF.center_crop(img_idx, **self.tvf_crop_params[idx])
|
139 |
+
img_idx_t = TVF.to_tensor(img_idx)
|
140 |
+
img_idx_t = TVF.normalize(img_idx_t, **self.tvf_normalize_params[idx])
|
141 |
+
imgs_t.append(img_idx_t)
|
142 |
+
|
143 |
+
# [Contract] `imgs_t` is a list of Tensors of shape [3, input_size, input_size]; stack along dim = 0
|
144 |
+
img_t = torch.vstack(imgs_t)
|
145 |
+
|
146 |
+
return img_t
|
147 |
+
|
148 |
+
def preprocess(
|
149 |
+
self,
|
150 |
+
images: Union[Image.Image, List[Image.Image]],
|
151 |
+
return_tensors: Optional[Union[str, TensorType]] = None,
|
152 |
+
**_: str,
|
153 |
+
) -> BatchFeature:
|
154 |
+
"""
|
155 |
+
Preprocess an image (or batch of images); note that unlike the `transformers :: BaseImageProcessor` we
|
156 |
+
explicitly only handle PIL.Image.Image instances for simplicity.
|
157 |
+
|
158 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
159 |
+
@param return_tensors: BatchFeature default Tensor format (e.g., "pt" for torch); if None, returns np.ndarray
|
160 |
+
|
161 |
+
@return: Instance of `transformers :: BatchFeature` with a single key "pixel_values"
|
162 |
+
"""
|
163 |
+
if not isinstance(images, list):
|
164 |
+
images = [images]
|
165 |
+
|
166 |
+
# Apply `self.img_transform` to each image (will return list of torch.Tensors); stack into "batched" Tensor
|
167 |
+
pixel_values = torch.stack([self.apply_transform(img.convert("RGB")) for img in images])
|
168 |
+
|
169 |
+
# Return BatchFeature =>> note that for compatibility, constructor expects Dict[str, np.ndarray], so we convert
|
170 |
+
return BatchFeature(data={"pixel_values": pixel_values.float().numpy()}, tensor_type=return_tensors)
|
171 |
+
|
172 |
+
def __call__(self, images: Union[Image.Image, List[Image.Image]], **kwargs) -> BatchFeature:
|
173 |
+
return self.preprocess(images, **kwargs)
|
174 |
+
|
175 |
+
|
176 |
+
# === PrismaticProcessor =>> Wraps both ImageProcessor and Tokenizer ===
|
177 |
+
# =>> https://github.com/huggingface/transformers/blob/main/src/transformers/models/llava/processing_llava.py
|
178 |
+
class PrismaticProcessor(ProcessorMixin):
|
179 |
+
attributes: ClassVar[List[str]] = ["image_processor", "tokenizer"]
|
180 |
+
image_processor_class: str = "AutoImageProcessor"
|
181 |
+
tokenizer_class: str = "AutoTokenizer"
|
182 |
+
|
183 |
+
def __init__(
|
184 |
+
self,
|
185 |
+
image_processor: Optional[ImageProcessingMixin] = None,
|
186 |
+
tokenizer: Optional[PreTrainedTokenizerBase] = None,
|
187 |
+
) -> None:
|
188 |
+
super().__init__(image_processor, tokenizer)
|
189 |
+
|
190 |
+
def __call__(
|
191 |
+
self,
|
192 |
+
text: Union[TextInput, PreTokenizedInput, List[TextInput], List[PreTokenizedInput]],
|
193 |
+
images: Union[Image.Image, List[Image.Image]],
|
194 |
+
padding: Union[bool, str, PaddingStrategy] = False,
|
195 |
+
truncation: Optional[Union[bool, str, TruncationStrategy]] = None,
|
196 |
+
max_length: Optional[int] = None,
|
197 |
+
return_tensors: Optional[Union[str, TensorType]] = TensorType.PYTORCH,
|
198 |
+
) -> BatchFeature:
|
199 |
+
"""
|
200 |
+
Preprocess a given (batch) of text/images for a Prismatic VLM; forwards text to the underlying LLM's tokenizer,
|
201 |
+
forwards images to PrismaticImageProcessor.
|
202 |
+
|
203 |
+
@param text: The (batch) of text to encode; must be a string or list of strings.
|
204 |
+
@param images: A (batch of) PIL.Image.Image instance(s) to preprocess.
|
205 |
+
@param padding: Sequence padding strategy (if multiple specified) in < True = "longest" | "max_length" | False >
|
206 |
+
@param truncation: Truncation strategy for the output sequences; requires `max_length` to be specified
|
207 |
+
@param max_length: Maximum length (in tokens) to truncate
|
208 |
+
@param return_tensors: Type of return tensors (usually "pt" or TensorType.PYTORCH)
|
209 |
+
|
210 |
+
@return: BatchFeature with keys for `input_ids`, `attention_mask` and `pixel_values`.
|
211 |
+
"""
|
212 |
+
pixel_values = self.image_processor(images, return_tensors=return_tensors)["pixel_values"]
|
213 |
+
text_inputs = self.tokenizer(
|
214 |
+
text, return_tensors=return_tensors, padding=padding, truncation=truncation, max_length=max_length
|
215 |
+
)
|
216 |
+
|
217 |
+
# [Validate] Need same number of images and text inputs!
|
218 |
+
if pixel_values.shape[0] != text_inputs.input_ids.shape[0]:
|
219 |
+
raise ValueError("Batch is malformed; expected same number of images and text inputs!")
|
220 |
+
|
221 |
+
return BatchFeature(data={**text_inputs, "pixel_values": pixel_values})
|
222 |
+
|
223 |
+
# === Tokenizer Dispatch Utilities =>> check `PreTrainedTokenizerBase` for documentation ===
|
224 |
+
def batch_decode(
|
225 |
+
self,
|
226 |
+
sequences: Union[List[int], List[List[int]], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
227 |
+
skip_special_tokens: bool = False,
|
228 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
229 |
+
**kwargs: str,
|
230 |
+
) -> List[str]:
|
231 |
+
return self.tokenizer.batch_decode(
|
232 |
+
sequences=sequences,
|
233 |
+
skip_special_tokens=skip_special_tokens,
|
234 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
235 |
+
**kwargs,
|
236 |
+
)
|
237 |
+
|
238 |
+
def decode(
|
239 |
+
self,
|
240 |
+
token_ids: Union[int, List[int], torch.Tensor, Any], # `Any` = np.ndarray | tf.Tensor
|
241 |
+
skip_special_tokens: bool = False,
|
242 |
+
clean_up_tokenization_spaces: Optional[bool] = None,
|
243 |
+
**kwargs: str,
|
244 |
+
) -> str:
|
245 |
+
return self.tokenizer.decode(
|
246 |
+
token_ids=token_ids,
|
247 |
+
skip_special_tokens=skip_special_tokens,
|
248 |
+
clean_up_tokenization_spaces=clean_up_tokenization_spaces,
|
249 |
+
**kwargs,
|
250 |
+
)
|
251 |
+
|
252 |
+
@property
|
253 |
+
def model_input_names(self) -> List[str]:
|
254 |
+
tokenizer_input_names = self.tokenizer.model_input_names
|
255 |
+
image_processor_input_names = self.image_processor.model_input_names
|
256 |
+
|
257 |
+
return list(dict.fromkeys(tokenizer_input_names + image_processor_input_names))
|