{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x78d6e39a0e50>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x78d6e39a0ee0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x78d6e39a0f70>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x78d6e39a1000>", "_build": "<function ActorCriticPolicy._build at 0x78d6e39a1090>", "forward": "<function ActorCriticPolicy.forward at 0x78d6e39a1120>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x78d6e39a11b0>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x78d6e39a1240>", "_predict": "<function ActorCriticPolicy._predict at 0x78d6e39a12d0>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x78d6e39a1360>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x78d6e39a13f0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x78d6e39a1480>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x78d6e3921280>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727103778263789305, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3i0Lxcs2S6pwC8uqA10bWqJHc5k03cOQAAAAAAAAAAmsmmO/aobLpuVTizPPVzqmQOgLtLe9QzAACAPwAAgD/gLhO+3EeyP1EQhb5v4KS+figIvlIfrb0AAAAAAAAAAJqlwTyr7Gk/vpBIvZdMrr6rZhg8sVygvQAAAAAAAAAAGqauvRQ1HT6K+p689AWxvv+I+byujpG9AAAAAAAAAADmeFK9KawNuvsDcLO9Nyaw52GFOy0SuDMAAIA/AACAPwAygbxRxEQ/yliTvd7Utb7kIZK9zIUfvQAAAAAAAAAA2qKQvbh8jbsXhL+6iQWWPKOvyTxtqX+9AAAAAAAAgD8zX1a+cFgOP5TkrD6ehVe+J6wLPRXXZjwAAAAAAAAAAM14ETzs1em7bzGUvPTsBz1XM1I90uTevQAAgD8AAIA/zaLqvLsvjz1XUjw+eh1dvmT4ozzSNZC6AAAAAAAAAADNpbI8F4lmPifnLL7n54q+OwQdvaY3qb0AAAAAAAAAAHrHMb4qEug+iKKiPmP3jL4Ord884CmOPQAAAAAAAAAAszicPfxrwz4IUZ++ZyWZvlFQvL1ORti8AAAAAAAAAABA9IK9S6TqPVmvQz5OEpa+h+NROyg4bLwAAAAAAAAAAHNyeD7jceY+JtJTvpMRhb44Rbw8c9rPuwAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVQQwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQG6osBIWgvmMAWyUTSABjAF0lEdAloakrPMSsnV9lChoBkdAZg9hZQpF1GgHTegDaAhHQJaG9yksSTR1fZQoaAZHQHBske6qbSZoB01CAWgIR0CWh4s41gpjdX2UKGgGR0ByK3bTMJQdaAdNEgFoCEdAlofSw0O3D3V9lChoBkdAcpgWnTAnD2gHTSkBaAhHQJaIxyo4uK51fZQoaAZHQHJasasIVudoB00pAWgIR0CWijZIQOFydX2UKGgGR0BwgSeMAFPjaAdNEwFoCEdAlouJQP7N0XV9lChoBkdAcRuTwUg0TGgHTRgBaAhHQJaL8OI68xt1fZQoaAZHQG37gCW/rSpoB00PAWgIR0CWjFKkl/pddX2UKGgGR0Bw24IKMNtqaAdNHgFoCEdAlozNJnQIEHV9lChoBkdAcnJ/bCaZyGgHTSEBaAhHQJaNxzySV4Z1fZQoaAZHQHBAdw3o9s9oB00kAWgIR0CWjh+/gzgudX2UKGgGR0Bt4I5xR2r5aAdNNgFoCEdAlo6khq0ty3V9lChoBkdAcnXrftQbdmgHTRoBaAhHQJaPTulXRw91fZQoaAZHQHHDWdAgPmRoB00aAWgIR0CWj7cNpdrwdX2UKGgGR0Bsi82xY7q6aAdNDQFoCEdAlpACJ0nw5XV9lChoBkdAciLNQ0oBrGgHTRsBaAhHQJaQMdcSoOx1fZQoaAZHQHKOzI3irDJoB00BAWgIR0CWkZ9Ujs2OdX2UKGgGR0BuazRa5f+kaAdNMAFoCEdAlpHWn4wh4nV9lChoBkdAcCbshPj4pWgHTUABaAhHQJaSoxbjcVR1fZQoaAZHQG/zUI1LrX1oB00GAWgIR0CWky4SpR4ydX2UKGgGR0BmbHW+XZ5BaAdNLgNoCEdAlpUU+1SflXV9lChoBkdAcKrCih37lGgHTQwBaAhHQJaVZn6Eal11fZQoaAZHQHLAyoS+QEJoB00pAWgIR0CWlg9GZuyedX2UKGgGR0BxbRKraM72aAdNPwFoCEdAlpZyEDhcaHV9lChoBkdAb2FbqQiiZmgHTSQBaAhHQJaWtMJx//h1fZQoaAZHQG8cczImw7loB00XAWgIR0CWlzUeMhoudX2UKGgGR0Bx3D3i704BaAdNHwFoCEdAlpfQDFId2nV9lChoBkdAcYTvkBCD3GgHTS4BaAhHQJaY3CsOoYN1fZQoaAZHQHFPqh+OOsFoB00mAWgIR0CWmUpzLfUGdX2UKGgGR0BwciL9/BnBaAdNIQFoCEdAlpnUdilSCXV9lChoBkdAcj2ztTkyUWgHTUUBaAhHQJaaxMIu5Bl1fZQoaAZHQHMLkAo5PuZoB00TAWgIR0CWmzBj4HopdX2UKGgGR0BxB2hYeT3ZaAdNSgFoCEdAlptrhNucc3V9lChoBkdAbexXp4bCJ2gHTTYBaAhHQJacQGNaQmx1fZQoaAZHQG+pf4AS39doB00aAWgIR0CWnVewcHW0dX2UKGgGR0Bw6GQcPvroaAdNQAFoCEdAlp41MdtEX3V9lChoBkdAEJqYqoZQ52gHS+poCEdAlqB4lIEr5XV9lChoBkdAb7elolD4QGgHTQ8BaAhHQJagn7+DOC51fZQoaAZHQGzN86vJRwZoB00lAWgIR0CWoMbLU1AJdX2UKGgGR0BxGskPczqKaAdNEgFoCEdAlqHD2exwAHV9lChoBkdAcbRnZ00WM2gHTUQBaAhHQJah7YpUgjh1fZQoaAZHQHKpIjKPn0VoB00gAWgIR0CWohJv5xiodX2UKGgGR0BwiWOgg5imaAdNCwFoCEdAlqLidBjWkXV9lChoBkdAcIQneSB9TmgHTR4BaAhHQJalJUJfICF1fZQoaAZHQG8R0GVzIWBoB00aAWgIR0CWpZe2uxKQdX2UKGgGR0BzISrdWQwLaAdNEQFoCEdAlqXwam4y5HV9lChoBkdAcheTnq3VkWgHTSkBaAhHQJaoaMir1dx1fZQoaAZHQG7HTfrKNhpoB009AWgIR0CWqLrOqvNedX2UKGgGR0BsvrvoePq+aAdNKwFoCEdAlqjCItUXHnV9lChoBkdAcxE1Vo6CDmgHTScBaAhHQJbFSCjDbah1fZQoaAZHQHB/3fdhy81oB00SAWgIR0CWxVIwdsBRdX2UKGgGR0BxoTwMH8jzaAdNGwFoCEdAlsYlRpDeCXV9lChoBkdAcejW/JvHcWgHTSQBaAhHQJbIBQj2SMd1fZQoaAZHQG2yZvUBnzxoB00QAWgIR0CWyBT6i0v5dX2UKGgGR0BwfDw8W9DhaAdNDwFoCEdAlsgn889wFXV9lChoBkdAcI/wpON5t2gHTRsBaAhHQJbImwkgOjJ1fZQoaAZHQHMO8CtA9mpoB00IAWgIR0CWyKCO3lS1dX2UKGgGR0Bw0tkQPI4maAdNRQFoCEdAlskQ3974SHV9lChoBkdAcebW912aD2gHTVEBaAhHQJbJPZnL7oB1fZQoaAZHQG9aILPUrkNoB00dAWgIR0CWytX9itq6dX2UKGgGR0BvMfpr1uiwaAdNKgFoCEdAlstyqEOAiHV9lChoBkdAcLs6Oo5xR2gHTUsBaAhHQJbMBYFJQLx1fZQoaAZHQHIa1Mh5gPVoB0v/aAhHQJbMFxyXD3x1fZQoaAZHQHAiKKgqVhVoB00oAWgIR0CWzZ5fMOf/dX2UKGgGR0Bv2Fg+hXbNaAdNHAFoCEdAls3RKL8763V9lChoBkdAcYMDR+jM3mgHTScBaAhHQJbOK2oegct1fZQoaAZHQHJKjbzshPloB00XAWgIR0CWzpc1fmcOdX2UKGgGR0BswDQiRnvlaAdNAwFoCEdAltBFnh86WHV9lChoBkdAcQlE+PikwmgHTSEBaAhHQJbRiZXuE251fZQoaAZHQG+PHLJSzgNoB00RAWgIR0CW0b1Fpfx+dX2UKGgGR0ByS37iyY5UaAdNEAFoCEdAltKrcsUZenV9lChoBkdAcYdPIXCTEGgHTTwBaAhHQJbUV47ihnJ1fZQoaAZHQHCblAJLM9toB00pAWgIR0CW1sJvHcUNdX2UKGgGR0BxpkJeE7GOaAdNBwFoCEdAltcZQgs9S3V9lChoBkdAcTyyVObiImgHTSkBaAhHQJbX2JWNm191fZQoaAZHQHJ1ijpLVWloB026AWgIR0CW27AvtdAxdX2UKGgGR0BxeY8PnSv1aAdNSAFoCEdAltytBnjABXV9lChoBkdAcPZrSmZVn2gHTSIBaAhHQJbdR/8VHnV1fZQoaAZHQHDai5uqFRJoB00aAWgIR0CW3Z6P8yeqdX2UKGgGR0Bw7f8EV32VaAdNHAFoCEdAlt4gzUI9knV9lChoBkdAb+XXL/0dzWgHTTkBaAhHQJbeQbwSamZ1fZQoaAZHQFVRkLQXyiFoB00BAWgIR0CW3pGX5WRzdX2UKGgGR0BzRt37k4m1aAdNFgFoCEdAluAuRxLkCHV9lChoBkdAcJJvboKUmmgHTRYBaAhHQJbg0QOFxn51fZQoaAZHQHJRlAE+xGFoB00zAWgIR0CW4PCJXQt0dX2UKGgGR0BuXF6kZaV2aAdNDQFoCEdAluMafapPynV9lChoBkdAchUjcEeQuGgHTRUBaAhHQJbjoxgy/K11fZQoaAZHQG+w1lwtJ4BoB01LAWgIR0CW49RlYlpodX2UKGgGR0Bw9kQZn+Q2aAdNPwFoCEdAluWtjXnQpnV9lChoBkdAcKGBF/hESmgHS/1oCEdAluXzHXEqD3V9lChoBkdAcYtDYAbQ1WgHTS8BaAhHQJbmP9R77bd1fZQoaAZHQHE0eogmqo9oB00pAWgIR0CW5qTvy9VWdX2UKGgGR0Bxew7kn1FpaAdNAQFoCEdAlua9gF5fMXV9lChoBkdAcMoo99tuUGgHTQMBaAhHQJbnJfmcOLB1fZQoaAZHQHCsRmkFfRhoB00yAWgIR0CW52W+49X+dX2UKGgGR0BvFufVZs9CaAdNKwFoCEdAlugHenAIp3V9lChoBkdAbuI8q4H5amgHTRwBaAhHQJbsD71qWTp1fZQoaAZHQGxXo9kjHGVoB00QAWgIR0CW7FsyBTXKdX2UKGgGR0BmRU52hZhbaAdN6ANoCEdAlu0sd5prUXVlLg=="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 372, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 1024, "gamma": 0.998, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 6, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}} |