ppo-LunarLander-v2 / config.json
robotfarmer's picture
Upload PPO LunarLander-v2 trained agent
d95b1ff verified
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c2e671ab0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c2e671b40>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c2e671bd0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c2e671c60>", "_build": "<function ActorCriticPolicy._build at 0x7f6c2e671cf0>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c2e671d80>", "extract_features": "<function ActorCriticPolicy.extract_features at 0x7f6c2e671e10>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c2e671ea0>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c2e671f30>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c2e671fc0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c2e672050>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c2e6720e0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x7f6c2e607180>"}, "verbose": 1, "policy_kwargs": {}, "num_timesteps": 1015808, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1727100054929984390, "learning_rate": 0.0003, "tensorboard_log": null, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAG0Jj74/Rto+sjxFPCH9ib7cES+9tsvVPAAAAAAAAAAAnUl1vk0dTT/9yP69iXmfvvnz8L1S93A9AAAAAAAAAACaTK2916MsuVFSirpcS3e1eYyfu19IoTkAAAAAAACAP+0TMr69M2M8hKoiO1lsUrljY/69fSpUugAAgD8AAIA/s17VveGMi7qqH4c5HgPpM/VBiLkapJu4AACAPwAAAADmgAC99qtBP8eiEb1BD6i+gGZKvL++Rz0AAAAAAAAAAMZ+J74pyn+89uV2u47ntbljWuE9CkGnOgAAgD8AAIA/dghPvk7DJj+lZ2y8PMesvhHjIr3815I9AAAAAAAAAADN38W87rm1P0ASqr5/tMK8jl4QujvpWb0AAAAAAAAAAGaFyTypgAk/7uH+vD8bhr7tz447dLitvAAAAAAAAAAAZgTNPcNtIrpLevi6DgYDuRTXubuKqpI4AACAPwAAgD96QyS+HHdlvCNb9Lj6zxm4p7/KPe34gzgAAIA/AACAP41NPj6k7Vg8mTZAvkNGOb7DlJW8xAPEvAAAAAAAAAAAZoakOv3zOD7Ws/u8wFYzvjk4JDv1mvc6AAAAAAAAAADaAjK+T9pjvMq1pDry+105yJ/FPdBn/LkAAIA/AACAP5r+97z0560/YlOuvkScxL5r6ai8ltZFvgAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "_stats_window_size": 100, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVKwwAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpRHQGzVckt29teMAWyUTQQBjAF0lEdAntfhtYSxq3V9lChoBkdAcSMEZR8+imgHTQwBaAhHQJ7YdqbjLjh1fZQoaAZHQHB9X2IwdsBoB00aAWgIR0Ce2ai2DxsmdX2UKGgGR0Bt9WmFajesaAdNAAFoCEdAntnrVawD/3V9lChoBkdAb7kYqG1x82gHTRQBaAhHQJ7aFa/yoXN1fZQoaAZHQHCUdkJ8fFJoB00VAWgIR0Ce2iuhK15TdX2UKGgGR0BtG6FmFrVOaAdNFwFoCEdAntplz6rNn3V9lChoBkdAcqKGCqZMMGgHS/hoCEdAnts1ijL0SXV9lChoBkdAcFhRkEs8PmgHS/1oCEdAntv1s+FDfHV9lChoBkdAbfg5zYEns2gHTQ4BaAhHQJ7eEnNPgvV1fZQoaAZHQHDHpOrQw9JoB00iAWgIR0Ce3v2SdOIqdX2UKGgGR0Bi+3mzSkTIaAdN6ANoCEdAnt8LsByS3nV9lChoBkdAcVMt52QnyGgHTQIBaAhHQJ7hAN8VpK11fZQoaAZHQHD8G+oLofVoB0v2aAhHQJ7hGwu/UON1fZQoaAZHQEE95le4TbpoB0v6aAhHQJ7h3mq5sj51fZQoaAZHQHGDpCBwuNBoB001AWgIR0Ce40+jdpIudX2UKGgGR0BviJNTLns+aAdNFwFoCEdAnuRDTjNpunV9lChoBkdAcImRekYXPGgHTSABaAhHQJ7k5fdAPd51fZQoaAZHQHLiur+5vtNoB00gAWgIR0CfRhGZNO/MdX2UKGgGR0BwcU4KhL5AaAdNTQFoCEdAn0b4Ox0MgHV9lChoBkdAcWaX7Lt/nWgHTSEBaAhHQJ9HFLFn7Hh1fZQoaAZHQHFtnu/k/8loB0vqaAhHQJ9HJ1mrbQF1fZQoaAZHQHBDyYsunMtoB0vwaAhHQJ9KxEc81XN1fZQoaAZHQHFemnsLORloB00iAWgIR0CfSsicoYvWdX2UKGgGR0BhuJHTZxrBaAdN6ANoCEdAn07c0k4WDnV9lChoBkdAb49R64UeuGgHS/BoCEdAn09czl90BHV9lChoBkdAbe1sguAZsWgHTVwBaAhHQJ9QDriVB2R1fZQoaAZHQHBGeL3sXzloB00MAWgIR0CfUqoM8YAKdX2UKGgGR0Bv3HnbItDlaAdNWAFoCEdAn1KxNh3JP3V9lChoBkdAb/nM/yGzr2gHTQYBaAhHQJ9TlASnLq51fZQoaAZHQG0TADJU5uJoB00EAWgIR0CfV30dilSCdX2UKGgGR0Bxp2HnEETyaAdNIwFoCEdAn1kcmF8G93V9lChoBkdAW20Ug0TDfmgHTegDaAhHQJ9acD/2kBV1fZQoaAZHQHAzyLVFx4poB00JAWgIR0CfXAeLvTgEdX2UKGgGR0Btwl2C/XXiaAdNDgFoCEdAn1y1M23rlnV9lChoBkdAcEaNc4YJmmgHTTcCaAhHQJ9etBF/hEV1fZQoaAZHQHAO2Fi8WbhoB00EAWgIR0CfX5naWX1KdX2UKGgGR0BxVFitq59WaAdNBAFoCEdAn1+nuqm0mnV9lChoBkdAcgYaKUFB6mgHTToBaAhHQJ9fxuDSPU91fZQoaAZHQHCo8TN+so5oB0v2aAhHQJ9f5EMLF4t1fZQoaAZHQHCvSN83MpxoB00UAWgIR0CfZjHNX5nEdX2UKGgGR0AnGDlo11nvaAdL3mgIR0CfZm3mFJxvdX2UKGgGR0Bf23Cbc45taAdN6ANoCEdAn2il1bJOnHV9lChoBkdAXXJ47ihnJ2gHTegDaAhHQJ9owGwA2ht1fZQoaAZHQG+FCw8nuzBoB01GAWgIR0Cfanr6+FlDdX2UKGgGR0BwafY+Sr5qaAdNFQFoCEdAn2uLhzeXRnV9lChoBkdAcQZ4+KTB7GgHS/RoCEdAn2vjUNKAa3V9lChoBkdAb7q65oXbd2gHTQ0BaAhHQJ9tbjYI0Il1fZQoaAZHQHD857ojfN1oB00PAWgIR0CfbYicXm/4dX2UKGgGR0BvgkwaisXBaAdNDwFoCEdAn23BVIZqEnV9lChoBkdAXlxkSVW0Z2gHTegDaAhHQJ9uI1P3ztl1fZQoaAZHQF7tbAUL2HtoB03oA2gIR0CfcQU5dWyUdX2UKGgGR0ByP2gte2NOaAdL+GgIR0CfcTfbblBAdX2UKGgGR0BuVbRtxdY5aAdL72gIR0CfckNs3yZsdX2UKGgGR0BvuP3UQTVUaAdNHgFoCEdAn3Kq/VRUFXV9lChoBkdAcFzOC5EtumgHTQABaAhHQJ9y/jbSJCV1fZQoaAZHQF1sSU1Q66toB03oA2gIR0CfdnBVMmF8dX2UKGgGR0BiY3OMVDa5aAdN6ANoCEdAn3aT1GsmwHV9lChoBkdAb7R3HJcPfGgHTRcCaAhHQJ94iwKSgXd1fZQoaAZHQG4uKbjLjghoB00SAWgIR0CfeMyxzJZGdX2UKGgGR0BwCQNc4YJmaAdNEwFoCEdAn3kit7rs0HV9lChoBkdAbJRa+N96TmgHTR0BaAhHQJ95XqZ+hGp1fZQoaAZHQG3edpqREF5oB0v8aAhHQJ99F8jRlYl1fZQoaAZHQHEbHA/LTx5oB00jAWgIR0Cffcj0L+gldX2UKGgGR0Bx+PujRD1HaAdNOQFoCEdAn36kDEFW4nV9lChoBkdAbEXQBxPweGgHTSkBaAhHQJ9/vJ7sv7F1fZQoaAZHQHBC+0TlDF9oB00pAWgIR0CfgCYr8R+SdX2UKGgGR0BwAfY/Vy3kaAdL8WgIR0CfgZPgvUSadX2UKGgGR0Axv50r9VFQaAdLymgIR0CfglnlXA/LdX2UKGgGR0BwnJqgyuZDaAdL+GgIR0CfhONT987ZdX2UKGgGR0BvKI22oegdaAdNHAFoCEdAn4YCrT6SDHV9lChoBkdAcNBqioKlYWgHTZMBaAhHQJ+JlB+nZTR1fZQoaAZHQHDZaAOJ+DxoB00SAWgIR0Cfiqq/M4cWdX2UKGgGR0ByWiyE+PilaAdL/mgIR0Cfi0DR+jM3dX2UKGgGR0BjBDV6NVBEaAdN6ANoCEdAn4tcQZn+Q3V9lChoBkdAb20dFOO802gHS/RoCEdAn4vhKHwgDHV9lChoBkdAcLwAGjbi62gHTS0BaAhHQJ+PGNVBD5V1fZQoaAZHQDzgtg8bJfZoB00GAWgIR0Cfj3qcmShbdX2UKGgGR0BwWgEcKgIyaAdNZwFoCEdAn49/HcUM5XV9lChoBkdAcNbhgE2YOWgHTTwBaAhHQJ+RYtZmqYJ1fZQoaAZHQG2An6/IsAhoB00iAWgIR0CflCsEJSiudX2UKGgGR0ByX7tZ3cHoaAdNIwFoCEdAn5WnfIjnm3V9lChoBkdAbiB7jT8YRGgHS/toCEdAn5enK8tf5XV9lChoBkdASNEFpwjt5WgHS9toCEdAn5fIDxLCenV9lChoBkdAcd8ez2OAAmgHS+RoCEdAn5kvuG9HtnV9lChoBkdAcV7xNqQA/GgHS/doCEdAn5mRQ79ycXV9lChoBkdAXUqnNxEORWgHTegDaAhHQJ+a2N83Mpx1fZQoaAZHQGJlnXNC7btoB03oA2gIR0CfnGXtjTa1dX2UKGgGR0BkKVuxbB42aAdN6ANoCEdAn5zf8AJb+3V9lChoBkdAcAVCpWFN+WgHS/hoCEdAn54m69TP0XV9lChoBkdAXGSvgWJrL2gHTegDaAhHQJ+fchpxm051fZQoaAZHQHA8M7dSEUVoB00NAWgIR0CfoLXJHRTkdX2UKGgGR0BvQUKXv6TGaAdNOAFoCEdAn6Du8wpOOHV9lChoBkdAb/b72L5yl2gHS/ZoCEdAn6JVy3kPtnV9lChoBkdAQJ3qRlpXZGgHS9poCEdAn6OI5DJEIHV9lChoBkdAb3S814xDcGgHTQoBaAhHQJ+kd2HLzPN1fZQoaAZHQHCEdkz41xdoB00eAWgIR0CfpT3iJfpmdX2UKGgGR0BwyTRD1GsnaAdNDgFoCEdAn6WAYDTz/nV9lChoBkdAblBbLU1AJWgHTTYBaAhHQJ+oS4FzMid1fZQoaAZHQHBb6zeGfwtoB00dAWgIR0CfqF1hb4ahdWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 310, "observation_space": {":type:": "<class 'gymnasium.spaces.box.Box'>", ":serialized:": "gAWVdgIAAAAAAACMFGd5bW5hc2l1bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lIwFZHR5cGWUk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMDWJvdW5kZWRfYmVsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWCAAAAAAAAAABAQEBAQEBAZRoCIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksIhZSMAUOUdJRSlIwNYm91bmRlZF9hYm92ZZRoESiWCAAAAAAAAAABAQEBAQEBAZRoFUsIhZRoGXSUUpSMBl9zaGFwZZRLCIWUjANsb3eUaBEoliAAAAAAAAAAAAC0wgAAtMIAAKDAAACgwNsPScAAAKDAAAAAgAAAAICUaAtLCIWUaBl0lFKUjARoaWdolGgRKJYgAAAAAAAAAAAAtEIAALRCAACgQAAAoEDbD0lAAACgQAAAgD8AAIA/lGgLSwiFlGgZdJRSlIwIbG93X3JlcHKUjFtbLTkwLiAgICAgICAgLTkwLiAgICAgICAgIC01LiAgICAgICAgIC01LiAgICAgICAgIC0zLjE0MTU5MjcgIC01LgogIC0wLiAgICAgICAgIC0wLiAgICAgICBdlIwJaGlnaF9yZXBylIxTWzkwLiAgICAgICAgOTAuICAgICAgICAgNS4gICAgICAgICA1LiAgICAgICAgIDMuMTQxNTkyNyAgNS4KICAxLiAgICAgICAgIDEuICAgICAgIF2UjApfbnBfcmFuZG9tlE51Yi4=", "dtype": "float32", "bounded_below": "[ True True True True True True True True]", "bounded_above": "[ True True True True True True True True]", "_shape": [8], "low": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "low_repr": "[-90. -90. -5. -5. -3.1415927 -5.\n -0. -0. ]", "high_repr": "[90. 90. 5. 5. 3.1415927 5.\n 1. 1. ]", "_np_random": null}, "action_space": {":type:": "<class 'gymnasium.spaces.discrete.Discrete'>", ":serialized:": "gAWV2wAAAAAAAACMGWd5bW5hc2l1bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIBAAAAAAAAACUhpRSlIwFc3RhcnSUaAhoDkMIAAAAAAAAAACUhpRSlIwGX3NoYXBllCmMBWR0eXBllGgOjApfbnBfcmFuZG9tlE51Yi4=", "n": "4", "start": "0", "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "n_steps": 2048, "gamma": 0.99, "gae_lambda": 0.95, "ent_coef": 0.0, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 10, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVxQIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSS91c3IvbG9jYWwvbGliL3B5dGhvbjMuMTAvZGlzdC1wYWNrYWdlcy9zdGFibGVfYmFzZWxpbmVzMy9jb21tb24vdXRpbHMucHmUjARmdW5jlEuEQwIEAZSMA3ZhbJSFlCl0lFKUfZQojAtfX3BhY2thZ2VfX5SMGHN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbpSMCF9fbmFtZV9flIwec3RhYmxlX2Jhc2VsaW5lczMuY29tbW9uLnV0aWxzlIwIX19maWxlX1+UjEkvdXNyL2xvY2FsL2xpYi9weXRob24zLjEwL2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB99lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "system_info": {"OS": "Linux-6.1.85+-x86_64-with-glibc2.35 # 1 SMP PREEMPT_DYNAMIC Thu Jun 27 21:05:47 UTC 2024", "Python": "3.10.12", "Stable-Baselines3": "2.0.0a5", "PyTorch": "2.4.1+cu121", "GPU Enabled": "True", "Numpy": "1.26.4", "Cloudpickle": "2.2.1", "Gymnasium": "0.28.1", "OpenAI Gym": "0.25.2"}}