robkaandorp
commited on
Commit
•
aeddf48
1
Parent(s):
ccebcb5
Add phi-2-super training script
Browse files- .gitattributes +1 -0
- train_csv_dataset_phi-2-super.py +96 -0
- train_dataset.py +0 -3
.gitattributes
CHANGED
@@ -25,6 +25,7 @@
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
results/**/* filter=lfs diff=lfs merge=lfs -text
|
|
|
28 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
|
|
25 |
*.safetensors filter=lfs diff=lfs merge=lfs -text
|
26 |
saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
27 |
results/**/* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
results_phi-2-super/**/* filter=lfs diff=lfs merge=lfs -text
|
29 |
*.tar.* filter=lfs diff=lfs merge=lfs -text
|
30 |
*.tar filter=lfs diff=lfs merge=lfs -text
|
31 |
*.tflite filter=lfs diff=lfs merge=lfs -text
|
train_csv_dataset_phi-2-super.py
ADDED
@@ -0,0 +1,96 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import time
|
2 |
+
import torch
|
3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TrainingArguments, DataCollatorForLanguageModeling
|
4 |
+
from trl import SFTTrainer
|
5 |
+
from peft import LoraConfig, prepare_model_for_kbit_training
|
6 |
+
|
7 |
+
dataset = load_dataset()
|
8 |
+
|
9 |
+
if torch.cuda.is_available():
|
10 |
+
print("Cuda is available")
|
11 |
+
|
12 |
+
base_model_id = "abacaj/phi-2-super"
|
13 |
+
output_dir = "./results_phi-2-super"
|
14 |
+
|
15 |
+
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
16 |
+
if tokenizer.pad_token is None:
|
17 |
+
tokenizer.pad_token = tokenizer.eos_token
|
18 |
+
print("pad_token was missing and has been set to eos_token")
|
19 |
+
|
20 |
+
# Configuration to load model in 4-bit quantized
|
21 |
+
bnb_config = BitsAndBytesConfig(load_in_4bit=True,
|
22 |
+
bnb_4bit_quant_type='nf4',
|
23 |
+
#bnb_4bit_compute_dtype='float16',
|
24 |
+
bnb_4bit_compute_dtype=torch.bfloat16,
|
25 |
+
bnb_4bit_use_double_quant=False)
|
26 |
+
|
27 |
+
model = AutoModelForCausalLM.from_pretrained(base_model_id, attn_implementation="flash_attention_2", quantization_config=bnb_config, torch_dtype="auto")
|
28 |
+
print(model)
|
29 |
+
|
30 |
+
# Gradient checkpointing to save memory
|
31 |
+
model.gradient_checkpointing_enable()
|
32 |
+
|
33 |
+
# Freeze base model layers and cast layernorm in fp32
|
34 |
+
model = prepare_model_for_kbit_training(model, use_gradient_checkpointing=True)
|
35 |
+
|
36 |
+
peft_config = LoraConfig(
|
37 |
+
r=64,
|
38 |
+
lora_alpha=64,
|
39 |
+
target_modules= ["q_proj","k_proj","v_proj","dense","fc2","fc1"],
|
40 |
+
bias="none",
|
41 |
+
lora_dropout=0.05,
|
42 |
+
task_type="CAUSAL_LM",
|
43 |
+
)
|
44 |
+
|
45 |
+
training_args = TrainingArguments(
|
46 |
+
output_dir=output_dir, # Output directory for checkpoints and predictions
|
47 |
+
overwrite_output_dir=True, # Overwrite the content of the output directory
|
48 |
+
per_device_train_batch_size=2, # Batch size for training
|
49 |
+
per_device_eval_batch_size=2, # Batch size for evaluation
|
50 |
+
gradient_accumulation_steps=5, # number of steps before optimizing
|
51 |
+
gradient_checkpointing=True, # Enable gradient checkpointing
|
52 |
+
gradient_checkpointing_kwargs={"use_reentrant": False},
|
53 |
+
warmup_steps=10, # Number of warmup steps
|
54 |
+
#max_steps=1000, # Total number of training steps
|
55 |
+
num_train_epochs=100, # Number of training epochs
|
56 |
+
learning_rate=5e-5, # Learning rate
|
57 |
+
weight_decay=0.01, # Weight decay
|
58 |
+
optim="paged_adamw_8bit", #Keep the optimizer state and quantize it
|
59 |
+
bf16=True, #Use mixed precision training
|
60 |
+
#For logging and saving
|
61 |
+
logging_dir='./logs',
|
62 |
+
logging_strategy="epoch",
|
63 |
+
logging_steps=10,
|
64 |
+
save_strategy="epoch",
|
65 |
+
save_steps=10,
|
66 |
+
save_total_limit=2, # Limit the total number of checkpoints
|
67 |
+
evaluation_strategy="epoch",
|
68 |
+
eval_steps=10,
|
69 |
+
load_best_model_at_end=True, # Load the best model at the end of training
|
70 |
+
lr_scheduler_type="linear",
|
71 |
+
)
|
72 |
+
|
73 |
+
def formatting_func(data):
|
74 |
+
return f"[INST] {data['prompt']} [/INST]{data['completion']}{tokenizer.eos_token} "
|
75 |
+
|
76 |
+
trainer = SFTTrainer(
|
77 |
+
model=model,
|
78 |
+
train_dataset=dataset,
|
79 |
+
eval_dataset=dataset,
|
80 |
+
peft_config=peft_config,
|
81 |
+
args=training_args,
|
82 |
+
max_seq_length=1024,
|
83 |
+
packing=True,
|
84 |
+
formatting_func=formatting_func
|
85 |
+
)
|
86 |
+
|
87 |
+
model.config.use_cache = False # silence the warnings. Please re-enable for inference!
|
88 |
+
|
89 |
+
start_time = time.time() # Record the start time
|
90 |
+
trainer.train()
|
91 |
+
end_time = time.time() # Record the end time
|
92 |
+
|
93 |
+
training_time = end_time - start_time # Calculate total training time
|
94 |
+
|
95 |
+
trainer.save_model(output_dir)
|
96 |
+
print(f"Training completed in {training_time} seconds.")
|
train_dataset.py
CHANGED
@@ -21,12 +21,9 @@ docs = db._collection.peek(db._collection.count())
|
|
21 |
dataset = docs['documents']
|
22 |
|
23 |
if torch.cuda.is_available():
|
24 |
-
# torch.set_default_device("cuda")
|
25 |
print("Cuda is available")
|
26 |
|
27 |
base_model_id = "microsoft/phi-2"
|
28 |
-
# base_model_id = "abacaj/phi-2-super"
|
29 |
-
# base_model_id = "./results"
|
30 |
|
31 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
32 |
if tokenizer.pad_token is None:
|
|
|
21 |
dataset = docs['documents']
|
22 |
|
23 |
if torch.cuda.is_available():
|
|
|
24 |
print("Cuda is available")
|
25 |
|
26 |
base_model_id = "microsoft/phi-2"
|
|
|
|
|
27 |
|
28 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id)
|
29 |
if tokenizer.pad_token is None:
|