roapple10 commited on
Commit
30f1950
1 Parent(s): e473abc

Push LunarLander-v2-model

Browse files
README.md ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ library_name: stable-baselines3
3
+ tags:
4
+ - LunarLander-v2
5
+ - deep-reinforcement-learning
6
+ - reinforcement-learning
7
+ - stable-baselines3
8
+ model-index:
9
+ - name: PPO
10
+ results:
11
+ - task:
12
+ type: reinforcement-learning
13
+ name: reinforcement-learning
14
+ dataset:
15
+ name: LunarLander-v2
16
+ type: LunarLander-v2
17
+ metrics:
18
+ - type: mean_reward
19
+ value: 263.02 +/- 21.24
20
+ name: mean_reward
21
+ verified: false
22
+ ---
23
+
24
+ # **PPO** Agent playing **LunarLander-v2**
25
+ This is a trained model of a **PPO** agent playing **LunarLander-v2**
26
+ using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
27
+
28
+ ## Usage (with Stable-baselines3)
29
+ TODO: Add your code
30
+
31
+
32
+ ```python
33
+ from stable_baselines3 import ...
34
+ from huggingface_sb3 import load_from_hub
35
+
36
+ ...
37
+ ```
config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb081973a0>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb08197430>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb081974c0>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb08197550>", "_build": "<function ActorCriticPolicy._build at 0x7fcb081975e0>", "forward": "<function ActorCriticPolicy.forward at 0x7fcb08197670>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb08197700>", "_predict": "<function ActorCriticPolicy._predict at 0x7fcb08197790>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb08197820>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb081978b0>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb08197940>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7fcb081909f0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAESMr97eVHXFRey7kXvwPa+GApjjC766zG5Mn1QKzzQV40WJHZUulf58lhiUGGN99qQZD4z+IOUQd0jsC+Q8xHV+CyF5zbyM2fJWzOZ2OJsAMcSuSjWIYERobUUydJ/SlzBuczuwwxEX0ODeGleXDzw91lGvqii5OWZ3KZWPrl996Ni0ETNEIvpyDN4S2uHQfg5vSCHSq2GUftCto/6oOAwWwE7L+uoBK6PBoVmIsCVl0sE6/nNU6/lHmFoJZB3+kwavEAekV1iJabCycL3EW1FUdVBSfSp7rLEKeLf4rPAmLZVhe1U3ZArclD80M4eoeWLd7X3dHOtWLfdC33OPCk+gYrs/E5a1Ba60+/yK3xgiRKMYyZZAYpxO4dR1tazhkJ5lQQoGm7NMUwVcvprrvCUc3jmykREhEoyxkCIriWuFx0cCrKwUTfExgNWPTRyPpItrJ3qYr3b6T2CBtTimO/AUukEj6aOQagpTTX/0shLgSzwexThxE9n++RV3f7amBxNIp5O163bOreBvkJ5LM+QNgbVc5Kqywy9jMQBm9tVTCAgzfZAHTFRhU/OhOg++t1yn4guTz0LH6YReGPbZEgLnG84fa7w/VWxtVQbiOaopvpkesxYfX+rjBS4FyM/BQlsyMnioispR8D+uKV/ocid63LL5jguh5s18psIFpxuy+CxdMEs9QHU8nXzAPai70veLx8Sf2KsIuMFMzxO7Km9wn4f74eOtND5xRvsRprVQWHfI3r3FACvzVQkLu6upd/CxLmp2Za7nCsUEyu7NXrfqvO0I5PH89z6xLlKNTnJnfAYisuGSWT7GS+GJt3V4IEPXnZ0SxJLF9oAMIWiZws8QPk1D7MNJbIYwJR6+P8bBlimxHyHLfX+40CWqxd+W/NUJAiLAnaC2PGp2gygIMKL8EDQ3AB5MX/h/yfsaRkIHmJ8gNZmMuyzWeNI6tPY21HPLM6LeOdvmy0TprgrpLRPr4mQwxfduE4oiA7AP3zw4wap9Z8g/XD8TCljjpn7Onf+3b+Ox2YsnEYreMZedcLmrBToGxZem7JnuqtcN0GSSOyMtUXZ9tJsRNEvKb/gn2QLjRI6140cdlMEtnbdtWh9DZtB1jhhvZfH7raB89EVFc/5sRdbQ/JpT6zpVA4vM6SFAXSqhkKV0QrEERk5o0itIGmeyf0qGOqExvclpFE+eNLXqfwXwSeR2SoJisO790IC1SszvZAymoPD2FKypZ85UP4v66tL6KIo+YSWj3LDT3nLQbCLvvysbk2/RouzH+KnL1vn6cKnAUIfIb0UCozqGmqdEDcIzn92gVE9KSyomFp7jiGnrxDvxsD/8NiobJtd7HTU8YDMbDyW9hAOBg5hCeb548bV9pufQadnZB+NEhvgfsPjA9LAY7R6BfMryTUeu7gdheRRYzGtUNvMUrB9yYbsoFM68gGOCbkmzkbx5cwGoGBeUAqSGpOqRBZrWHmm8zum8zY6w6tTDe0o+0Taj19W9JT+QKLDcLhSfczWNpXHnbUhvlpR6K8Lpn+MEEoGEW1WKQyM6zOfxPToJjKDuHg6vE6FY2toquK0H8GbtYu6NvpXUn1M0AC2JTtLaSBFdhUydRiD71HqA+VyPtwCbSf4pl5fyzKn8fn3oOvpcbSH03ZaldRlBimk3Jt6ooe+OYf6PVHa5iIs3MUDqGT36v/8oUvQzVf9wfFeF6Nz8y8YWuSpUgzqm3qqfC/aodMZJzq7FGY4lJ2JA3lSp9CDs1YrGJPszDDSOD3a+y+Sw5tuqjjKTDQv73tFKS+0iN18aqSYtqH4m9OlEH/SK2D3ndTNUIiaQdXP7rX2i88J4bHacyksGDxer2oBn55bDy5LEFJ3ZFxs6TiKmn4RcF5XL6uVBG2OPOdY1PEpGxiZWdyFGnuakAYQLCRKYMYC4vydLwbcgSEZz+Cjgg1di1HG//OJkPCNrOEo98rHdRMooIBibWfgMT+94gFB6lZHidOfs47Cwj4PELWVpRmYtmhqnrjOW+5qPRI3nWjigwp0tB3ELbPpEA98gswO9q96Syr1bgrzOf5XNEQaJT0lGHsn7UJZymjb9VNoSj6FoEjkme7pBHkJ/YpU+CN0x0x0g8r0D7/fkGGMV9AM7j9pP0BdaKj6LOfd4Hnjq30Xq0lCHhwUdZrT54rvkzp09112flUpaC082g5D98C/Z7PoXqRF4apn26xWVpInAnLTtqJtSSljqOHcnhW0b4lywhTggYCe3n04NsMoNNCh9lCvjfx1BR3ECp0wmMfywCt8HR2SrFNL/YL2QzYUuZeflo4kgaZRIpuLUxa+cXfnbnCiihWu4NCYBxYxpsKecmU8putRhGUYx0+S0UVqBxxmw/LAHgEDhRSuX85bAqVZb5PulZjyNvUq3A3AVngrnYmlxHCsxxU9nXNSw41efgLIpb5sUTOhWt5T9NAzHM5Sw75iQzfSIDGSCAAdTMelWiwu/lr26JcNeZSIXsg3EiEat9sRHV/3jmliWtnfJc/Xr666tzi8CTNea/BZ3/VX8fJ9UIHuSCnheR9AumGgKq0rtzpgc8jIBG2mf2JCpu8z32/K0EFlxjX1xdLkDKMAXRHmBFWdkYVYyxuFWy6xZ7rq57qXvhI32krsLqxabDaXJxxuQ5iX13Rra5Jb8GhXeupIEgJjWAvxnW11mMPfbk2KuURdUDpY8pZkZYnvoCbq3FAItWrxkMLiX7w54ss9qHyzHB4dg4QPCT9oJ2xtal1BoUawiZKk2/RwPhT6MHOtPTVpa0Swet/b7eS/NlnqWOAJmh+bltImqSedNbzI7EtS7um99i86rAk/TRy3PdK1aO5UGYYFFsiMpivY/O6j9+nOUMbksI5ZvapbjJW17co05d0YROEw2L6xC5Ef3YQ2QQhmEfo6p9g5bhXDQnYWY88DMOHtPqSJ8sWOWzZGFk8CyiKcZiuCY9HBrcdAW8HGtkqBhwDRCmcq8Q+N64E314ChiBcPTVyFPRwdhhlABH61YzDGbhsYodpig4wPYhBzW8Kj793VKRNQBZXQxdwvgDtykGGuzQXjWGcVwQ+lXxGOqibhjWQtmTqKOKnT3QlwuVdjERrWblFAiu7imQeCotCg+O1QuYtzbAneKMQs57KFT0EOje0flIld7zisn/sdWQPDOh7GZ8qvNz15sA0PIBhcj1NqWPWvlLzNyJ5gizdmHFKNMLtE+eXj1kGZREdWf0HOwoCml3GYHe6dwSoyc2w/jYNUrXiv3uesc+sw6u8R0lQzvrbieYnQ1BKH4Ij2rmqbu30CWC5diG+F75Thcfoyw+rmDAB08kAzRbHMZn+Xkn8W42JRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": "RandomState(MT19937)"}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAiiJkcvugTczr4zturaCxKi6jyBooqSNgoYmKNZSxg/Pvr1cvhAF27efRBVyCik13vrF/YAA1jxURDZjHgdWGbnkhApVDx+5tca1cLeBnPqTJIJrerqLASmEFQY/VDu/GTZ+evWYsDs97Z0Wjt8MwYX9qPRrFoxh7yZphklvMRJ7OhPxPkyx1ERHoYy9Hdc/53eeeC0I0a+t0SH1v7hg1BKNP5xSJo1kTFGzRqNgv29gRaFed0dETFPhTqn0FkFwZ7ev/AywwbPGS44ox8bHYTj0sQF3RDNlmsuuOMdXLDUSwIokT2AlCm1Dpj40TIbnyADeK/7fbpCEsd5Jo3sHK40Is+liMkCEyHwBRPwHLk60IjT2BY5Tl3IsWm7QG1bElxrOU/PDO67XSWBBMGbSzgqUhVmcjWUX7KWrPWBHBmfftQbMoK1KeXUNaT0onEOMbLXvmmRXgqmPgURDBUh7M6NYiG9/j5keWeBuu4ILrJFI3PXDXi66FKXWB0vj1XOEgQAKazBhfXjI1hNeyPj+pOSpFuYD0QY8nMMetyH/VhaN9+Y3KuP/UT492rP8+yfQeYQCXZ2gOZuWk7K1IiF8kbwloFFW0yDuQDK7Ze4IBmlipk9a3oo4/xrgcQM0CY2Och9LR5opYUItRHDic5ID0gDWrvSEOpws04MqyEzlTIxGeXiFy2zYOKnGiVAtPT19FiX5Qr+bN8SfBJVE3CONccFhFAKueRCRqZ1c4prZvCMtxTxIPG8CJfMKeeqIE4CPf/vL8NoK8dROz/iJQ2vFRauIhaX3AS2n/yd3P6PfYxSiKfW+koYgtxhzbfcaBswL2WwlTl3FADcUbMA4lV2xgc5Z/0YNDWRqudIEcg7RuMZtp3JGbFL8hHCZgGAMz7X7qcT9wObTrXhT+D7leYQjNYpILngqgCH/i/2dHZw2NjaSndzMNpU9ijsQmg2rPSMdApfOjQRwlPOrIzDE6HVjLo021O4RIjSXk7CbCRv4bg5kNscqO0lw1irMYSkOU2Jyisk4Px99RuwtUzMoYkYbMF1dScTmDQEODfdNnRJku4xxqRWlLRsOILPGz8AOSqTmfkN7WipLp0mpx+LgBD7aNJZUFmVB/wbu4mf10YHcv+Fd7GMS+m02ekSQbgYJCyM1izmkviWYliRontN7AX1CTsIDhDFtHdzZTcvoKXFstRTHpoLnyzNNW7/yMWEolWZakRjYeM80hL9NP4vRBf+d3IkUh6wB3UBS/Sdx8yPgQhmCFQ8ECiCMoqufUtwc4cJf8g92wG6v7KJUqNorr5+qdFPEPscqFgdoaFrHDqkN/PAbgbZimhfZQEP5qY1+hYktI37JkT2hDMbbQU1heuhVSk7JaI+PGTsC5/nk6cQJ0N/EOCURt9QyiLfZKOs+TGMM5gwgIyfI30S8mCiWyCuWFN/4FeOuTzAaVyYjdVysMdghZWnoqZj6Ekw5bNJR3UKUlThglNsio1NwLMog0aI1rv+Rntu1YoQmOUHvYdsg5cHbfqIhw+hOhOKIJ0ADr8H8TTAWuLEW3z+/pbSyqeGNqmONAi8jtlvIia2cbYO7jSlBJ2qsHEQVWW/wjy50uiydJrgM7GkEUX6UjqVs201b1Yy1RjMVlMlmUudbK8/GtdSkLZmftD9lpdewaMWWp9NzrkYCZb+g9xS0v/xLQqx3vzvwhZU2Pk0a5IIfVklmk+p6k5IpyCsorrBvC43xgMcphtnR9WVR61LIes0kssfKqsFrasvNzhTqp/zJ8AyOjZAprh2CkqwYTq7oL4gfIDisKsy/hfgZ06dXBA2+peX4HHO2JHtD9QWd3X+8wkLaopSxX8xa5Yo9fJQfbp3Prh6MSP/SecPpzNiC5XHlcw2s7MBb5wChuAkzTtTCIVWmD15NXC1gdOvJZT0Mv+wrb6o7fGIsZYuYlx/uERNbyKmu0i2pLhVUpPWUt8MRt+2A+R6HI+q+YCQGCIYhBfc0i+FEDJhI/B9gLIjxVqNo9CR6uzpF3DcObSulQ0nnOHkMpFbqewGnhPMvR2aMWODJMIXa5Jl/sP5+RGJw9Nf/mnuxUE4zkUqwds7JRoo/PIXXBjfn4gcynN7qKppUfR08FIY95GDdpBvLrhvL4dtQBzRzZ24VlV3LATWEpxh8bRhjwxANeOA9zmxBU7SuNAzJmRkNtbTqZ4hy4ncfq2If5KiYVg365xgNa2xLzLbNT84J5QuOSddFZk9+g6FVCyl0GwlHc2YvBg14143AUcN/rCi5hBLqkw3/iPtA9q+KWg4ShMViPWGyxr95FUYwYkheDFzEfQNDXX/eFBc+hQa1KJoQtnowBq4C9EgLMUXKV1Mf6kw7GsSxGvo+mv24T4P9n2OuLY5scHsZ0OuRM/zxe4Y37/zEqroDl5y9e/BMXT2wBtDwRGwuHNeeC8pqcuPRayZiS3uft2e7UvIywwAMkfq/ppurMQ9GuqDu9Tvovgw4ydC/a12ITvAAJDYZXak44AVskWL5cLBGj67OYWyTr0rsbmKWwZv9vk9LkJqQvDtDgs7Msr8xIWuc57RPSgHw67Vg/uMYFoTloYcxWQcl+OjYIWObTq4ky59NVMINlxeRiRHNzO+VCxnZbsSgB5z77QcEvb9zuyps1H9l59mNTEQdXTnyOtZr6+T8fNkVmCO70L54Nh5/nZ7CI7UnK9bRvlTY09P2Vzs0Nl/mIo6iY96fRzKod5E1Zymlq3JtnGXIY1LfSq4m1/kUCxKhcUinxslKALZfwswHzuQBbljVuoEm3IvIK5E99ITdK89POo3CiDTTGylzonVQgMI75bz7KxESw1RUZ2wB7NzjjM6lVMQ19nHlBvm8SxBG2P/FPujWSbEKF4OID27cvoPqIW1FwHzelDrl5lzbSk/MFkw2q9Qd+4NcVZW7cwsqhHxifwmrYgDbDqcXK7aeI6GkX7jF8E9ooCZgihh3bBqFrm55sso3ZX+4eZuI/6UACxvqmt7Ii8ZPxyHDx/P9fb4broo/ijwFXdM8oRayIdVOyn9IyMErQwq/0fTugjbKGN4FeWatsOc4Dpr1fG4gMXV//9Q7RsAnaL3cbL/34dYcx6gDd6smsei9Rnavsv3tBSu5HuMzdLDqoYdquTzptF71DsrNVdUzSdYXspAs6Xg4qnB+dV+hqh+223CKzUPn4QpcR99umrCGzN9vxjZuRn4C23T2ijY9nx9HYKuyjYZIc68g3+pPNrUsmAkBE6PfnZkeE4j5T6xtVzCBIlfyPj1ArA8ecZI5EwVXIestOXzAnkoX+tRHtdWtrdQGPboAv/XhM+7qJGfR8RvL3/w9fLJ6hDP1dJls/lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=", "n": 4, "_shape": [], "dtype": "int64", "_np_random": "RandomState(MT19937)"}, "n_envs": 1, "num_timesteps": 1000448, "_total_timesteps": 1000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1670821817452148209, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKB1Cz6plHM9twAHvsWyJ76lCi29TXBxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.00044800000000000395, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItdyZCQaAb0CUhpRSlIwBbJRNewGMAXSUR0CekLL9MsYmdX2UKGgGaAloD0MIiQyreCOlcECUhpRSlGgVS99oFkdAnpH4gvDgqHV9lChoBmgJaA9DCA/Tvrm/ynJAlIaUUpRoFU2vAWgWR0CelKZQYUFjdX2UKGgGaAloD0MID7kZbsBMUkCUhpRSlGgVS8toFkdAnpb8iwB5o3V9lChoBmgJaA9DCPWeymlP/HFAlIaUUpRoFU0ZAWgWR0CemJRywOe8dX2UKGgGaAloD0MIXTEjvP0+cECUhpRSlGgVTY4CaBZHQJ6c4P5HmRx1fZQoaAZoCWgPQwinQGZn0b5wQJSGlFKUaBVL9WgWR0Cen3pb2USqdX2UKGgGaAloD0MIl6q0xbVpcECUhpRSlGgVTQEBaBZHQJ6g6GsV+JB1fZQoaAZoCWgPQwgdO6jEdfRGQJSGlFKUaBVLpWgWR0CeocxVhkRSdX2UKGgGaAloD0MIh6OrdLccckCUhpRSlGgVTSsBaBZHQJ6jdsGgSOB1fZQoaAZoCWgPQwgOaOkK9kNwQJSGlFKUaBVL92gWR0CepghTwUg0dX2UKGgGaAloD0MIMzZ0sz9icECUhpRSlGgVS/9oFkdAnqdr2HtWuHV9lChoBmgJaA9DCDJ2wkswxnFAlIaUUpRoFU0rAWgWR0CeqR9Sde6adX2UKGgGaAloD0MIDfyohn09ckCUhpRSlGgVTR4BaBZHQJ6qqa7VawF1fZQoaAZoCWgPQwjFOlW+Z7NxQJSGlFKUaBVL8GgWR0CerUQ8fV7QdX2UKGgGaAloD0MIIGCt2rWbcUCUhpRSlGgVS+JoFkdAnq6Fsk6cRXV9lChoBmgJaA9DCMiW5esyXXJAlIaUUpRoFUvdaBZHQJ6vxJXhfjV1fZQoaAZoCWgPQwjo2az6nGRyQJSGlFKUaBVLx2gWR0CesNvoePq+dX2UKGgGaAloD0MIb4EExc+ucUCUhpRSlGgVTSEBaBZHQJ6zw8B+4LF1fZQoaAZoCWgPQwhDAkaXN/NPQJSGlFKUaBVLzmgWR0CetNlijL0SdX2UKGgGaAloD0MIysUYWMcDUUCUhpRSlGgVS3JoFkdAnrVvPC2tuHV9lChoBmgJaA9DCLBVgsXhUW5AlIaUUpRoFUvqaBZHQJ62u606YE51fZQoaAZoCWgPQwgzpIriVeFwQJSGlFKUaBVNNwFoFkdAnriC/O+qR3V9lChoBmgJaA9DCBH/sKVH5nFAlIaUUpRoFU0CAWgWR0CeuxXZ5AyEdX2UKGgGaAloD0MIyuL+I5M3ckCUhpRSlGgVS+ZoFkdAnrxyDVYp2HV9lChoBmgJaA9DCOY+OQpQsHFAlIaUUpRoFUvpaBZHQJ69ts+FDfF1fZQoaAZoCWgPQwiDE9GvbQ9wQJSGlFKUaBVL92gWR0CevxUD+zdDdX2UKGgGaAloD0MIXHaIf9hKP0CUhpRSlGgVS7NoFkdAnsFKGgzxgHV9lChoBmgJaA9DCKNAn8jT53BAlIaUUpRoFUveaBZHQJ7Ces6q8151fZQoaAZoCWgPQwiHNZVFYUtxQJSGlFKUaBVL7WgWR0Cew79h7VridX2UKGgGaAloD0MIL+Blhk1Oc0CUhpRSlGgVS/toFkdAnsUqZH/cWXV9lChoBmgJaA9DCGx3D9C9WHFAlIaUUpRoFUvraBZHQJ7HrIyTINp1fZQoaAZoCWgPQwjeyhKdJe1wQJSGlFKUaBVL/GgWR0CeyShakhzOdX2UKGgGaAloD0MIUn5S7RMkcUCUhpRSlGgVS/JoFkdAnsqFAJLM93V9lChoBmgJaA9DCEp5rYRuNXJAlIaUUpRoFUv9aBZHQJ7L4W3z+WJ1fZQoaAZoCWgPQwjwpIXLKqBwQJSGlFKUaBVNDAFoFkdAns1wHzH0b3V9lChoBmgJaA9DCC52+6xyS3FAlIaUUpRoFUvRaBZHQJ7PyHO8kD91fZQoaAZoCWgPQwiYhuEjollxQJSGlFKUaBVNcQFoFkdAntH2iL2pQ3V9lChoBmgJaA9DCOY/pN8+y3BAlIaUUpRoFUvoaBZHQJ7TNwDNhVl1fZQoaAZoCWgPQwgKEtvdQ1dxQJSGlFKUaBVNJgFoFkdAntYriVB2OnV9lChoBmgJaA9DCEeP39v04UNAlIaUUpRoFUvdaBZHQJ7XTcfvF3p1fZQoaAZoCWgPQwhyb37DhCNxQJSGlFKUaBVNSgFoFkdAntk3eWOZLXV9lChoBmgJaA9DCEdaKm+H5XFAlIaUUpRoFU0nAWgWR0Ce2sl7tzCDdX2UKGgGaAloD0MIXW4w1CHgcECUhpRSlGgVTU8BaBZHQJ7eSkZaV2R1fZQoaAZoCWgPQwhMxFvn3wVqQJSGlFKUaBVN6ANoFkdAnuZueSSvDHV9lChoBmgJaA9DCG6iluZWfG9AlIaUUpRoFUvzaBZHQJ7ntpsXSBt1fZQoaAZoCWgPQwjOb5hoEKxxQJSGlFKUaBVNMQJoFkdAnutwjD8+A3V9lChoBmgJaA9DCIWxhSAHCXJAlIaUUpRoFU0eAWgWR0Ce7l2wFC9idX2UKGgGaAloD0MIrp6T3jfjckCUhpRSlGgVTcABaBZHQJ7xNp9JBgN1fZQoaAZoCWgPQwjwGB77GQ1wQJSGlFKUaBVNHgFoFkdAnvLcP8Q7LnV9lChoBmgJaA9DCDIdOj1vh3BAlIaUUpRoFUv7aBZHQJ71kOUdJat1fZQoaAZoCWgPQwitpuuJrvpwQJSGlFKUaBVNbgFoFkdAnvgBOUMXrXV9lChoBmgJaA9DCLaF56UiNHFAlIaUUpRoFU0ZA2gWR0Ce/38UEgW8dX2UKGgGaAloD0MIuOf50wb5ckCUhpRSlGgVTUgBaBZHQJ8BRCngpBp1fZQoaAZoCWgPQwjwNQTH5R5zQJSGlFKUaBVL3GgWR0CfAmc5bQkYdX2UKGgGaAloD0MIusDlsSY9c0CUhpRSlGgVTQMBaBZHQJ8FB45cTrV1fZQoaAZoCWgPQwgrwHebt09uQJSGlFKUaBVL52gWR0CfBlxSYPXkdX2UKGgGaAloD0MIiPNwAtOBbkCUhpRSlGgVTTYBaBZHQJ8IMDp1RtR1fZQoaAZoCWgPQwhSYAFM2XxzQJSGlFKUaBVL52gWR0CfCXwLmZE2dX2UKGgGaAloD0MIIm+5+vEKckCUhpRSlGgVTdABaBZHQJ8NtNlAeJZ1fZQoaAZoCWgPQwg0EMtmDgRxQJSGlFKUaBVNVgFoFkdAnw/fjS5RTHV9lChoBmgJaA9DCJnWprH9MHBAlIaUUpRoFU0qAWgWR0CfEY89fTkRdX2UKGgGaAloD0MIjxmojP/gcECUhpRSlGgVS+ZoFkdAnxQK8xsVL3V9lChoBmgJaA9DCIF8CRUc4nJAlIaUUpRoFU0oAWgWR0CfFdLr5ZbIdX2UKGgGaAloD0MI9Wc/UgT8cECUhpRSlGgVS+RoFkdAnxcSXY150XV9lChoBmgJaA9DCGUBE7h18XFAlIaUUpRoFUvoaBZHQJ8YZhBqsU91fZQoaAZoCWgPQwgbhSSzOvJxQJSGlFKUaBVL42gWR0CfGuPKdQO4dX2UKGgGaAloD0MIdopVgzBcbkCUhpRSlGgVS+9oFkdAnxwrdadMCnV9lChoBmgJaA9DCNGy7h9LqXFAlIaUUpRoFUvMaBZHQJ8dOEIw/Ph1fZQoaAZoCWgPQwjrjO+Li4FxQJSGlFKUaBVLyGgWR0CfHkTzND+jdX2UKGgGaAloD0MI1zTvOEU3RUCUhpRSlGgVS9JoFkdAnx9htk4FR3V9lChoBmgJaA9DCH/d6c4TpXFAlIaUUpRoFUvXaBZHQJ8h0oKD0191fZQoaAZoCWgPQwif6SXGsm9wQJSGlFKUaBVL/2gWR0CfI0QWN3nqdX2UKGgGaAloD0MIxOqPMAzcZUCUhpRSlGgVTSwCaBZHQJ8mnRSgoPV1fZQoaAZoCWgPQwg6zJcXoK5wQJSGlFKUaBVL8WgWR0CfKSzu4PPLdX2UKGgGaAloD0MIqdvZV54cckCUhpRSlGgVTRYBaBZHQJ8q1LTQVsV1fZQoaAZoCWgPQwiyZmSQ+x5xQJSGlFKUaBVNWwFoFkdAnyzazqrzXnV9lChoBmgJaA9DCBcrajDNynJAlIaUUpRoFU1RAWgWR0CfL/WBz3h5dX2UKGgGaAloD0MI6Etvfy6HckCUhpRSlGgVTR0BaBZHQJ8xkgEEC/51fZQoaAZoCWgPQwjXL9gNW+5vQJSGlFKUaBVNCAFoFkdAnzMERaouPHV9lChoBmgJaA9DCDI6IAk7i3FAlIaUUpRoFUv/aBZHQJ80XqOcUdt1fZQoaAZoCWgPQwhj7e9sD2xwQJSGlFKUaBVNAAFoFkdAnzcHj2i+L3V9lChoBmgJaA9DCOW1ErqLo3JAlIaUUpRoFUvXaBZHQJ84K8zyjHp1fZQoaAZoCWgPQwjDmsqi8CVxQJSGlFKUaBVL22gWR0CfOVFqzqrzdX2UKGgGaAloD0MIKETAIVSZcECUhpRSlGgVTSEBaBZHQJ868Hv+fiB1fZQoaAZoCWgPQwi3nEtxVddwQJSGlFKUaBVNBAFoFkdAnz2aJhvzfHV9lChoBmgJaA9DCLBz02acw3FAlIaUUpRoFUvWaBZHQJ8+yNT987Z1fZQoaAZoCWgPQwghO29jM6lvQJSGlFKUaBVNFAFoFkdAn0BtmL9/BnV9lChoBmgJaA9DCKaYg6DjWXJAlIaUUpRoFUvjaBZHQJ9BpgCwKSh1fZQoaAZoCWgPQwj2B8pte2lvQJSGlFKUaBVL/GgWR0CfREZlWfbsdX2UKGgGaAloD0MIW0I+6BknckCUhpRSlGgVTSEBaBZHQJ9F5TkyULV1fZQoaAZoCWgPQwjoLomzog9yQJSGlFKUaBVNHAFoFkdAn0dorOJLunV9lChoBmgJaA9DCFXbTfBN7m1AlIaUUpRoFUv2aBZHQJ9IuhmGucN1fZQoaAZoCWgPQwipvB3h9IBwQJSGlFKUaBVL7mgWR0CfS1VPva11dX2UKGgGaAloD0MIvASnPpCbcECUhpRSlGgVTREBaBZHQJ9M0UN8VpN1fZQoaAZoCWgPQwjQmEnUC7pxQJSGlFKUaBVNDAFoFkdAn044+B6KL3V9lChoBmgJaA9DCLtjsU1qqHFAlIaUUpRoFU1aAWgWR0CfUZuCPIXCdX2UKGgGaAloD0MI8b2/QfsPcUCUhpRSlGgVTT4BaBZHQJ9TdNN8E3d1fZQoaAZoCWgPQwhBgAwd+09wQJSGlFKUaBVNGwFoFkdAn1UT9KmKqHV9lChoBmgJaA9DCFex+E1h+W5AlIaUUpRoFUvqaBZHQJ9WU9jgAIZ1ZS4="}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 3908, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022", "Python": "3.8.16", "Stable-Baselines3": "1.6.2", "PyTorch": "1.13.0+cu116", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
ppo-LunarLander-v2.zip ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:940967eacdd3a416c0e3e98390f9c24177570e566e35721a978bf7dab74a5f3d
3
+ size 153768
ppo-LunarLander-v2/_stable_baselines3_version ADDED
@@ -0,0 +1 @@
 
 
1
+ 1.6.2
ppo-LunarLander-v2/data ADDED
@@ -0,0 +1,94 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "policy_class": {
3
+ ":type:": "<class 'abc.ABCMeta'>",
4
+ ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
5
+ "__module__": "stable_baselines3.common.policies",
6
+ "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
7
+ "__init__": "<function ActorCriticPolicy.__init__ at 0x7fcb081973a0>",
8
+ "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7fcb08197430>",
9
+ "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7fcb081974c0>",
10
+ "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7fcb08197550>",
11
+ "_build": "<function ActorCriticPolicy._build at 0x7fcb081975e0>",
12
+ "forward": "<function ActorCriticPolicy.forward at 0x7fcb08197670>",
13
+ "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7fcb08197700>",
14
+ "_predict": "<function ActorCriticPolicy._predict at 0x7fcb08197790>",
15
+ "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7fcb08197820>",
16
+ "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7fcb081978b0>",
17
+ "predict_values": "<function ActorCriticPolicy.predict_values at 0x7fcb08197940>",
18
+ "__abstractmethods__": "frozenset()",
19
+ "_abc_impl": "<_abc_data object at 0x7fcb081909f0>"
20
+ },
21
+ "verbose": 1,
22
+ "policy_kwargs": {},
23
+ "observation_space": {
24
+ ":type:": "<class 'gym.spaces.box.Box'>",
25
+ ":serialized:": "gAWVJgwAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaDCMBXN0YXRllH2UKIwDa2V5lGgSKJbACQAAAAAAAESMr97eVHXFRey7kXvwPa+GApjjC766zG5Mn1QKzzQV40WJHZUulf58lhiUGGN99qQZD4z+IOUQd0jsC+Q8xHV+CyF5zbyM2fJWzOZ2OJsAMcSuSjWIYERobUUydJ/SlzBuczuwwxEX0ODeGleXDzw91lGvqii5OWZ3KZWPrl996Ni0ETNEIvpyDN4S2uHQfg5vSCHSq2GUftCto/6oOAwWwE7L+uoBK6PBoVmIsCVl0sE6/nNU6/lHmFoJZB3+kwavEAekV1iJabCycL3EW1FUdVBSfSp7rLEKeLf4rPAmLZVhe1U3ZArclD80M4eoeWLd7X3dHOtWLfdC33OPCk+gYrs/E5a1Ba60+/yK3xgiRKMYyZZAYpxO4dR1tazhkJ5lQQoGm7NMUwVcvprrvCUc3jmykREhEoyxkCIriWuFx0cCrKwUTfExgNWPTRyPpItrJ3qYr3b6T2CBtTimO/AUukEj6aOQagpTTX/0shLgSzwexThxE9n++RV3f7amBxNIp5O163bOreBvkJ5LM+QNgbVc5Kqywy9jMQBm9tVTCAgzfZAHTFRhU/OhOg++t1yn4guTz0LH6YReGPbZEgLnG84fa7w/VWxtVQbiOaopvpkesxYfX+rjBS4FyM/BQlsyMnioispR8D+uKV/ocid63LL5jguh5s18psIFpxuy+CxdMEs9QHU8nXzAPai70veLx8Sf2KsIuMFMzxO7Km9wn4f74eOtND5xRvsRprVQWHfI3r3FACvzVQkLu6upd/CxLmp2Za7nCsUEyu7NXrfqvO0I5PH89z6xLlKNTnJnfAYisuGSWT7GS+GJt3V4IEPXnZ0SxJLF9oAMIWiZws8QPk1D7MNJbIYwJR6+P8bBlimxHyHLfX+40CWqxd+W/NUJAiLAnaC2PGp2gygIMKL8EDQ3AB5MX/h/yfsaRkIHmJ8gNZmMuyzWeNI6tPY21HPLM6LeOdvmy0TprgrpLRPr4mQwxfduE4oiA7AP3zw4wap9Z8g/XD8TCljjpn7Onf+3b+Ox2YsnEYreMZedcLmrBToGxZem7JnuqtcN0GSSOyMtUXZ9tJsRNEvKb/gn2QLjRI6140cdlMEtnbdtWh9DZtB1jhhvZfH7raB89EVFc/5sRdbQ/JpT6zpVA4vM6SFAXSqhkKV0QrEERk5o0itIGmeyf0qGOqExvclpFE+eNLXqfwXwSeR2SoJisO790IC1SszvZAymoPD2FKypZ85UP4v66tL6KIo+YSWj3LDT3nLQbCLvvysbk2/RouzH+KnL1vn6cKnAUIfIb0UCozqGmqdEDcIzn92gVE9KSyomFp7jiGnrxDvxsD/8NiobJtd7HTU8YDMbDyW9hAOBg5hCeb548bV9pufQadnZB+NEhvgfsPjA9LAY7R6BfMryTUeu7gdheRRYzGtUNvMUrB9yYbsoFM68gGOCbkmzkbx5cwGoGBeUAqSGpOqRBZrWHmm8zum8zY6w6tTDe0o+0Taj19W9JT+QKLDcLhSfczWNpXHnbUhvlpR6K8Lpn+MEEoGEW1WKQyM6zOfxPToJjKDuHg6vE6FY2toquK0H8GbtYu6NvpXUn1M0AC2JTtLaSBFdhUydRiD71HqA+VyPtwCbSf4pl5fyzKn8fn3oOvpcbSH03ZaldRlBimk3Jt6ooe+OYf6PVHa5iIs3MUDqGT36v/8oUvQzVf9wfFeF6Nz8y8YWuSpUgzqm3qqfC/aodMZJzq7FGY4lJ2JA3lSp9CDs1YrGJPszDDSOD3a+y+Sw5tuqjjKTDQv73tFKS+0iN18aqSYtqH4m9OlEH/SK2D3ndTNUIiaQdXP7rX2i88J4bHacyksGDxer2oBn55bDy5LEFJ3ZFxs6TiKmn4RcF5XL6uVBG2OPOdY1PEpGxiZWdyFGnuakAYQLCRKYMYC4vydLwbcgSEZz+Cjgg1di1HG//OJkPCNrOEo98rHdRMooIBibWfgMT+94gFB6lZHidOfs47Cwj4PELWVpRmYtmhqnrjOW+5qPRI3nWjigwp0tB3ELbPpEA98gswO9q96Syr1bgrzOf5XNEQaJT0lGHsn7UJZymjb9VNoSj6FoEjkme7pBHkJ/YpU+CN0x0x0g8r0D7/fkGGMV9AM7j9pP0BdaKj6LOfd4Hnjq30Xq0lCHhwUdZrT54rvkzp09112flUpaC082g5D98C/Z7PoXqRF4apn26xWVpInAnLTtqJtSSljqOHcnhW0b4lywhTggYCe3n04NsMoNNCh9lCvjfx1BR3ECp0wmMfywCt8HR2SrFNL/YL2QzYUuZeflo4kgaZRIpuLUxa+cXfnbnCiihWu4NCYBxYxpsKecmU8putRhGUYx0+S0UVqBxxmw/LAHgEDhRSuX85bAqVZb5PulZjyNvUq3A3AVngrnYmlxHCsxxU9nXNSw41efgLIpb5sUTOhWt5T9NAzHM5Sw75iQzfSIDGSCAAdTMelWiwu/lr26JcNeZSIXsg3EiEat9sRHV/3jmliWtnfJc/Xr666tzi8CTNea/BZ3/VX8fJ9UIHuSCnheR9AumGgKq0rtzpgc8jIBG2mf2JCpu8z32/K0EFlxjX1xdLkDKMAXRHmBFWdkYVYyxuFWy6xZ7rq57qXvhI32krsLqxabDaXJxxuQ5iX13Rra5Jb8GhXeupIEgJjWAvxnW11mMPfbk2KuURdUDpY8pZkZYnvoCbq3FAItWrxkMLiX7w54ss9qHyzHB4dg4QPCT9oJ2xtal1BoUawiZKk2/RwPhT6MHOtPTVpa0Swet/b7eS/NlnqWOAJmh+bltImqSedNbzI7EtS7um99i86rAk/TRy3PdK1aO5UGYYFFsiMpivY/O6j9+nOUMbksI5ZvapbjJW17co05d0YROEw2L6xC5Ef3YQ2QQhmEfo6p9g5bhXDQnYWY88DMOHtPqSJ8sWOWzZGFk8CyiKcZiuCY9HBrcdAW8HGtkqBhwDRCmcq8Q+N64E314ChiBcPTVyFPRwdhhlABH61YzDGbhsYodpig4wPYhBzW8Kj793VKRNQBZXQxdwvgDtykGGuzQXjWGcVwQ+lXxGOqibhjWQtmTqKOKnT3QlwuVdjERrWblFAiu7imQeCotCg+O1QuYtzbAneKMQs57KFT0EOje0flIld7zisn/sdWQPDOh7GZ8qvNz15sA0PIBhcj1NqWPWvlLzNyJ5gizdmHFKNMLtE+eXj1kGZREdWf0HOwoCml3GYHe6dwSoyc2w/jYNUrXiv3uesc+sw6u8R0lQzvrbieYnQ1BKH4Ij2rmqbu30CWC5diG+F75Thcfoyw+rmDAB08kAzRbHMZn+Xkn8W42JRoB4wCdTSUiYiHlFKUKEsDaAtOTk5K/////0r/////SwB0lGJNcAKFlGgVdJRSlIwDcG9zlEsQdYwJaGFzX2dhdXNzlEsAjAVnYXVzc5RHAAAAAAAAAAB1YnViLg==",
26
+ "dtype": "float32",
27
+ "_shape": [
28
+ 8
29
+ ],
30
+ "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
31
+ "high": "[inf inf inf inf inf inf inf inf]",
32
+ "bounded_below": "[False False False False False False False False]",
33
+ "bounded_above": "[False False False False False False False False]",
34
+ "_np_random": "RandomState(MT19937)"
35
+ },
36
+ "action_space": {
37
+ ":type:": "<class 'gym.spaces.discrete.Discrete'>",
38
+ ":serialized:": "gAWVLgsAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZSMFG51bXB5LnJhbmRvbS5fcGlja2xllIwSX19yYW5kb21zdGF0ZV9jdG9ylJOUjAdNVDE5OTM3lIWUUpR9lCiMDWJpdF9nZW5lcmF0b3KUaBOMBXN0YXRllH2UKIwDa2V5lIwSbnVtcHkuY29yZS5udW1lcmljlIwLX2Zyb21idWZmZXKUk5QolsAJAAAAAAAAiiJkcvugTczr4zturaCxKi6jyBooqSNgoYmKNZSxg/Pvr1cvhAF27efRBVyCik13vrF/YAA1jxURDZjHgdWGbnkhApVDx+5tca1cLeBnPqTJIJrerqLASmEFQY/VDu/GTZ+evWYsDs97Z0Wjt8MwYX9qPRrFoxh7yZphklvMRJ7OhPxPkyx1ERHoYy9Hdc/53eeeC0I0a+t0SH1v7hg1BKNP5xSJo1kTFGzRqNgv29gRaFed0dETFPhTqn0FkFwZ7ev/AywwbPGS44ox8bHYTj0sQF3RDNlmsuuOMdXLDUSwIokT2AlCm1Dpj40TIbnyADeK/7fbpCEsd5Jo3sHK40Is+liMkCEyHwBRPwHLk60IjT2BY5Tl3IsWm7QG1bElxrOU/PDO67XSWBBMGbSzgqUhVmcjWUX7KWrPWBHBmfftQbMoK1KeXUNaT0onEOMbLXvmmRXgqmPgURDBUh7M6NYiG9/j5keWeBuu4ILrJFI3PXDXi66FKXWB0vj1XOEgQAKazBhfXjI1hNeyPj+pOSpFuYD0QY8nMMetyH/VhaN9+Y3KuP/UT492rP8+yfQeYQCXZ2gOZuWk7K1IiF8kbwloFFW0yDuQDK7Ze4IBmlipk9a3oo4/xrgcQM0CY2Och9LR5opYUItRHDic5ID0gDWrvSEOpws04MqyEzlTIxGeXiFy2zYOKnGiVAtPT19FiX5Qr+bN8SfBJVE3CONccFhFAKueRCRqZ1c4prZvCMtxTxIPG8CJfMKeeqIE4CPf/vL8NoK8dROz/iJQ2vFRauIhaX3AS2n/yd3P6PfYxSiKfW+koYgtxhzbfcaBswL2WwlTl3FADcUbMA4lV2xgc5Z/0YNDWRqudIEcg7RuMZtp3JGbFL8hHCZgGAMz7X7qcT9wObTrXhT+D7leYQjNYpILngqgCH/i/2dHZw2NjaSndzMNpU9ijsQmg2rPSMdApfOjQRwlPOrIzDE6HVjLo021O4RIjSXk7CbCRv4bg5kNscqO0lw1irMYSkOU2Jyisk4Px99RuwtUzMoYkYbMF1dScTmDQEODfdNnRJku4xxqRWlLRsOILPGz8AOSqTmfkN7WipLp0mpx+LgBD7aNJZUFmVB/wbu4mf10YHcv+Fd7GMS+m02ekSQbgYJCyM1izmkviWYliRontN7AX1CTsIDhDFtHdzZTcvoKXFstRTHpoLnyzNNW7/yMWEolWZakRjYeM80hL9NP4vRBf+d3IkUh6wB3UBS/Sdx8yPgQhmCFQ8ECiCMoqufUtwc4cJf8g92wG6v7KJUqNorr5+qdFPEPscqFgdoaFrHDqkN/PAbgbZimhfZQEP5qY1+hYktI37JkT2hDMbbQU1heuhVSk7JaI+PGTsC5/nk6cQJ0N/EOCURt9QyiLfZKOs+TGMM5gwgIyfI30S8mCiWyCuWFN/4FeOuTzAaVyYjdVysMdghZWnoqZj6Ekw5bNJR3UKUlThglNsio1NwLMog0aI1rv+Rntu1YoQmOUHvYdsg5cHbfqIhw+hOhOKIJ0ADr8H8TTAWuLEW3z+/pbSyqeGNqmONAi8jtlvIia2cbYO7jSlBJ2qsHEQVWW/wjy50uiydJrgM7GkEUX6UjqVs201b1Yy1RjMVlMlmUudbK8/GtdSkLZmftD9lpdewaMWWp9NzrkYCZb+g9xS0v/xLQqx3vzvwhZU2Pk0a5IIfVklmk+p6k5IpyCsorrBvC43xgMcphtnR9WVR61LIes0kssfKqsFrasvNzhTqp/zJ8AyOjZAprh2CkqwYTq7oL4gfIDisKsy/hfgZ06dXBA2+peX4HHO2JHtD9QWd3X+8wkLaopSxX8xa5Yo9fJQfbp3Prh6MSP/SecPpzNiC5XHlcw2s7MBb5wChuAkzTtTCIVWmD15NXC1gdOvJZT0Mv+wrb6o7fGIsZYuYlx/uERNbyKmu0i2pLhVUpPWUt8MRt+2A+R6HI+q+YCQGCIYhBfc0i+FEDJhI/B9gLIjxVqNo9CR6uzpF3DcObSulQ0nnOHkMpFbqewGnhPMvR2aMWODJMIXa5Jl/sP5+RGJw9Nf/mnuxUE4zkUqwds7JRoo/PIXXBjfn4gcynN7qKppUfR08FIY95GDdpBvLrhvL4dtQBzRzZ24VlV3LATWEpxh8bRhjwxANeOA9zmxBU7SuNAzJmRkNtbTqZ4hy4ncfq2If5KiYVg365xgNa2xLzLbNT84J5QuOSddFZk9+g6FVCyl0GwlHc2YvBg14143AUcN/rCi5hBLqkw3/iPtA9q+KWg4ShMViPWGyxr95FUYwYkheDFzEfQNDXX/eFBc+hQa1KJoQtnowBq4C9EgLMUXKV1Mf6kw7GsSxGvo+mv24T4P9n2OuLY5scHsZ0OuRM/zxe4Y37/zEqroDl5y9e/BMXT2wBtDwRGwuHNeeC8pqcuPRayZiS3uft2e7UvIywwAMkfq/ppurMQ9GuqDu9Tvovgw4ydC/a12ITvAAJDYZXak44AVskWL5cLBGj67OYWyTr0rsbmKWwZv9vk9LkJqQvDtDgs7Msr8xIWuc57RPSgHw67Vg/uMYFoTloYcxWQcl+OjYIWObTq4ky59NVMINlxeRiRHNzO+VCxnZbsSgB5z77QcEvb9zuyps1H9l59mNTEQdXTnyOtZr6+T8fNkVmCO70L54Nh5/nZ7CI7UnK9bRvlTY09P2Vzs0Nl/mIo6iY96fRzKod5E1Zymlq3JtnGXIY1LfSq4m1/kUCxKhcUinxslKALZfwswHzuQBbljVuoEm3IvIK5E99ITdK89POo3CiDTTGylzonVQgMI75bz7KxESw1RUZ2wB7NzjjM6lVMQ19nHlBvm8SxBG2P/FPujWSbEKF4OID27cvoPqIW1FwHzelDrl5lzbSk/MFkw2q9Qd+4NcVZW7cwsqhHxifwmrYgDbDqcXK7aeI6GkX7jF8E9ooCZgihh3bBqFrm55sso3ZX+4eZuI/6UACxvqmt7Ii8ZPxyHDx/P9fb4broo/ijwFXdM8oRayIdVOyn9IyMErQwq/0fTugjbKGN4FeWatsOc4Dpr1fG4gMXV//9Q7RsAnaL3cbL/34dYcx6gDd6smsei9Rnavsv3tBSu5HuMzdLDqoYdquTzptF71DsrNVdUzSdYXspAs6Xg4qnB+dV+hqh+223CKzUPn4QpcR99umrCGzN9vxjZuRn4C23T2ijY9nx9HYKuyjYZIc68g3+pPNrUsmAkBE6PfnZkeE4j5T6xtVzCBIlfyPj1ArA8ecZI5EwVXIestOXzAnkoX+tRHtdWtrdQGPboAv/XhM+7qJGfR8RvL3/w9fLJ6hDP1dJls/lGgJjAJ1NJSJiIeUUpQoSwNoDU5OTkr/////Sv////9LAHSUYk1wAoWUjAFDlHSUUpSMA3Bvc5RLAXWMCWhhc19nYXVzc5RLAIwFZ2F1c3OURwAAAAAAAAAAdWJ1Yi4=",
39
+ "n": 4,
40
+ "_shape": [],
41
+ "dtype": "int64",
42
+ "_np_random": "RandomState(MT19937)"
43
+ },
44
+ "n_envs": 1,
45
+ "num_timesteps": 1000448,
46
+ "_total_timesteps": 1000000,
47
+ "_num_timesteps_at_start": 0,
48
+ "seed": null,
49
+ "action_noise": null,
50
+ "start_time": 1670821817452148209,
51
+ "learning_rate": 0.0003,
52
+ "tensorboard_log": null,
53
+ "lr_schedule": {
54
+ ":type:": "<class 'function'>",
55
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/M6kqMFUyYYWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
56
+ },
57
+ "_last_obs": {
58
+ ":type:": "<class 'numpy.ndarray'>",
59
+ ":serialized:": "gAWVlQAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAKB1Cz6plHM9twAHvsWyJ76lCi29TXBxvQAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksBSwiGlIwBQ5R0lFKULg=="
60
+ },
61
+ "_last_episode_starts": {
62
+ ":type:": "<class 'numpy.ndarray'>",
63
+ ":serialized:": "gAWVdAAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYBAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSwGFlIwBQ5R0lFKULg=="
64
+ },
65
+ "_last_original_obs": null,
66
+ "_episode_num": 0,
67
+ "use_sde": false,
68
+ "sde_sample_freq": -1,
69
+ "_current_progress_remaining": -0.00044800000000000395,
70
+ "ep_info_buffer": {
71
+ ":type:": "<class 'collections.deque'>",
72
+ ":serialized:": "gAWVTRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMItdyZCQaAb0CUhpRSlIwBbJRNewGMAXSUR0CekLL9MsYmdX2UKGgGaAloD0MIiQyreCOlcECUhpRSlGgVS99oFkdAnpH4gvDgqHV9lChoBmgJaA9DCA/Tvrm/ynJAlIaUUpRoFU2vAWgWR0CelKZQYUFjdX2UKGgGaAloD0MID7kZbsBMUkCUhpRSlGgVS8toFkdAnpb8iwB5o3V9lChoBmgJaA9DCPWeymlP/HFAlIaUUpRoFU0ZAWgWR0CemJRywOe8dX2UKGgGaAloD0MIXTEjvP0+cECUhpRSlGgVTY4CaBZHQJ6c4P5HmRx1fZQoaAZoCWgPQwinQGZn0b5wQJSGlFKUaBVL9WgWR0Cen3pb2USqdX2UKGgGaAloD0MIl6q0xbVpcECUhpRSlGgVTQEBaBZHQJ6g6GsV+JB1fZQoaAZoCWgPQwgdO6jEdfRGQJSGlFKUaBVLpWgWR0CeocxVhkRSdX2UKGgGaAloD0MIh6OrdLccckCUhpRSlGgVTSsBaBZHQJ6jdsGgSOB1fZQoaAZoCWgPQwgOaOkK9kNwQJSGlFKUaBVL92gWR0CepghTwUg0dX2UKGgGaAloD0MIMzZ0sz9icECUhpRSlGgVS/9oFkdAnqdr2HtWuHV9lChoBmgJaA9DCDJ2wkswxnFAlIaUUpRoFU0rAWgWR0CeqR9Sde6adX2UKGgGaAloD0MIDfyohn09ckCUhpRSlGgVTR4BaBZHQJ6qqa7VawF1fZQoaAZoCWgPQwjFOlW+Z7NxQJSGlFKUaBVL8GgWR0CerUQ8fV7QdX2UKGgGaAloD0MIIGCt2rWbcUCUhpRSlGgVS+JoFkdAnq6Fsk6cRXV9lChoBmgJaA9DCMiW5esyXXJAlIaUUpRoFUvdaBZHQJ6vxJXhfjV1fZQoaAZoCWgPQwjo2az6nGRyQJSGlFKUaBVLx2gWR0CesNvoePq+dX2UKGgGaAloD0MIb4EExc+ucUCUhpRSlGgVTSEBaBZHQJ6zw8B+4LF1fZQoaAZoCWgPQwhDAkaXN/NPQJSGlFKUaBVLzmgWR0CetNlijL0SdX2UKGgGaAloD0MIysUYWMcDUUCUhpRSlGgVS3JoFkdAnrVvPC2tuHV9lChoBmgJaA9DCLBVgsXhUW5AlIaUUpRoFUvqaBZHQJ62u606YE51fZQoaAZoCWgPQwgzpIriVeFwQJSGlFKUaBVNNwFoFkdAnriC/O+qR3V9lChoBmgJaA9DCBH/sKVH5nFAlIaUUpRoFU0CAWgWR0CeuxXZ5AyEdX2UKGgGaAloD0MIyuL+I5M3ckCUhpRSlGgVS+ZoFkdAnrxyDVYp2HV9lChoBmgJaA9DCOY+OQpQsHFAlIaUUpRoFUvpaBZHQJ69ts+FDfF1fZQoaAZoCWgPQwiDE9GvbQ9wQJSGlFKUaBVL92gWR0CevxUD+zdDdX2UKGgGaAloD0MIXHaIf9hKP0CUhpRSlGgVS7NoFkdAnsFKGgzxgHV9lChoBmgJaA9DCKNAn8jT53BAlIaUUpRoFUveaBZHQJ7Ces6q8151fZQoaAZoCWgPQwiHNZVFYUtxQJSGlFKUaBVL7WgWR0Cew79h7VridX2UKGgGaAloD0MIL+Blhk1Oc0CUhpRSlGgVS/toFkdAnsUqZH/cWXV9lChoBmgJaA9DCGx3D9C9WHFAlIaUUpRoFUvraBZHQJ7HrIyTINp1fZQoaAZoCWgPQwjeyhKdJe1wQJSGlFKUaBVL/GgWR0CeyShakhzOdX2UKGgGaAloD0MIUn5S7RMkcUCUhpRSlGgVS/JoFkdAnsqFAJLM93V9lChoBmgJaA9DCEp5rYRuNXJAlIaUUpRoFUv9aBZHQJ7L4W3z+WJ1fZQoaAZoCWgPQwjwpIXLKqBwQJSGlFKUaBVNDAFoFkdAns1wHzH0b3V9lChoBmgJaA9DCC52+6xyS3FAlIaUUpRoFUvRaBZHQJ7PyHO8kD91fZQoaAZoCWgPQwiYhuEjollxQJSGlFKUaBVNcQFoFkdAntH2iL2pQ3V9lChoBmgJaA9DCOY/pN8+y3BAlIaUUpRoFUvoaBZHQJ7TNwDNhVl1fZQoaAZoCWgPQwgKEtvdQ1dxQJSGlFKUaBVNJgFoFkdAntYriVB2OnV9lChoBmgJaA9DCEeP39v04UNAlIaUUpRoFUvdaBZHQJ7XTcfvF3p1fZQoaAZoCWgPQwhyb37DhCNxQJSGlFKUaBVNSgFoFkdAntk3eWOZLXV9lChoBmgJaA9DCEdaKm+H5XFAlIaUUpRoFU0nAWgWR0Ce2sl7tzCDdX2UKGgGaAloD0MIXW4w1CHgcECUhpRSlGgVTU8BaBZHQJ7eSkZaV2R1fZQoaAZoCWgPQwhMxFvn3wVqQJSGlFKUaBVN6ANoFkdAnuZueSSvDHV9lChoBmgJaA9DCG6iluZWfG9AlIaUUpRoFUvzaBZHQJ7ntpsXSBt1fZQoaAZoCWgPQwjOb5hoEKxxQJSGlFKUaBVNMQJoFkdAnutwjD8+A3V9lChoBmgJaA9DCIWxhSAHCXJAlIaUUpRoFU0eAWgWR0Ce7l2wFC9idX2UKGgGaAloD0MIrp6T3jfjckCUhpRSlGgVTcABaBZHQJ7xNp9JBgN1fZQoaAZoCWgPQwjwGB77GQ1wQJSGlFKUaBVNHgFoFkdAnvLcP8Q7LnV9lChoBmgJaA9DCDIdOj1vh3BAlIaUUpRoFUv7aBZHQJ71kOUdJat1fZQoaAZoCWgPQwitpuuJrvpwQJSGlFKUaBVNbgFoFkdAnvgBOUMXrXV9lChoBmgJaA9DCLaF56UiNHFAlIaUUpRoFU0ZA2gWR0Ce/38UEgW8dX2UKGgGaAloD0MIuOf50wb5ckCUhpRSlGgVTUgBaBZHQJ8BRCngpBp1fZQoaAZoCWgPQwjwNQTH5R5zQJSGlFKUaBVL3GgWR0CfAmc5bQkYdX2UKGgGaAloD0MIusDlsSY9c0CUhpRSlGgVTQMBaBZHQJ8FB45cTrV1fZQoaAZoCWgPQwgrwHebt09uQJSGlFKUaBVL52gWR0CfBlxSYPXkdX2UKGgGaAloD0MIiPNwAtOBbkCUhpRSlGgVTTYBaBZHQJ8IMDp1RtR1fZQoaAZoCWgPQwhSYAFM2XxzQJSGlFKUaBVL52gWR0CfCXwLmZE2dX2UKGgGaAloD0MIIm+5+vEKckCUhpRSlGgVTdABaBZHQJ8NtNlAeJZ1fZQoaAZoCWgPQwg0EMtmDgRxQJSGlFKUaBVNVgFoFkdAnw/fjS5RTHV9lChoBmgJaA9DCJnWprH9MHBAlIaUUpRoFU0qAWgWR0CfEY89fTkRdX2UKGgGaAloD0MIjxmojP/gcECUhpRSlGgVS+ZoFkdAnxQK8xsVL3V9lChoBmgJaA9DCIF8CRUc4nJAlIaUUpRoFU0oAWgWR0CfFdLr5ZbIdX2UKGgGaAloD0MI9Wc/UgT8cECUhpRSlGgVS+RoFkdAnxcSXY150XV9lChoBmgJaA9DCGUBE7h18XFAlIaUUpRoFUvoaBZHQJ8YZhBqsU91fZQoaAZoCWgPQwgbhSSzOvJxQJSGlFKUaBVL42gWR0CfGuPKdQO4dX2UKGgGaAloD0MIdopVgzBcbkCUhpRSlGgVS+9oFkdAnxwrdadMCnV9lChoBmgJaA9DCNGy7h9LqXFAlIaUUpRoFUvMaBZHQJ8dOEIw/Ph1fZQoaAZoCWgPQwjrjO+Li4FxQJSGlFKUaBVLyGgWR0CfHkTzND+jdX2UKGgGaAloD0MI1zTvOEU3RUCUhpRSlGgVS9JoFkdAnx9htk4FR3V9lChoBmgJaA9DCH/d6c4TpXFAlIaUUpRoFUvXaBZHQJ8h0oKD0191fZQoaAZoCWgPQwif6SXGsm9wQJSGlFKUaBVL/2gWR0CfI0QWN3nqdX2UKGgGaAloD0MIxOqPMAzcZUCUhpRSlGgVTSwCaBZHQJ8mnRSgoPV1fZQoaAZoCWgPQwg6zJcXoK5wQJSGlFKUaBVL8WgWR0CfKSzu4PPLdX2UKGgGaAloD0MIqdvZV54cckCUhpRSlGgVTRYBaBZHQJ8q1LTQVsV1fZQoaAZoCWgPQwiyZmSQ+x5xQJSGlFKUaBVNWwFoFkdAnyzazqrzXnV9lChoBmgJaA9DCBcrajDNynJAlIaUUpRoFU1RAWgWR0CfL/WBz3h5dX2UKGgGaAloD0MI6Etvfy6HckCUhpRSlGgVTR0BaBZHQJ8xkgEEC/51fZQoaAZoCWgPQwjXL9gNW+5vQJSGlFKUaBVNCAFoFkdAnzMERaouPHV9lChoBmgJaA9DCDI6IAk7i3FAlIaUUpRoFUv/aBZHQJ80XqOcUdt1fZQoaAZoCWgPQwhj7e9sD2xwQJSGlFKUaBVNAAFoFkdAnzcHj2i+L3V9lChoBmgJaA9DCOW1ErqLo3JAlIaUUpRoFUvXaBZHQJ84K8zyjHp1fZQoaAZoCWgPQwjDmsqi8CVxQJSGlFKUaBVL22gWR0CfOVFqzqrzdX2UKGgGaAloD0MIKETAIVSZcECUhpRSlGgVTSEBaBZHQJ868Hv+fiB1fZQoaAZoCWgPQwi3nEtxVddwQJSGlFKUaBVNBAFoFkdAnz2aJhvzfHV9lChoBmgJaA9DCLBz02acw3FAlIaUUpRoFUvWaBZHQJ8+yNT987Z1fZQoaAZoCWgPQwghO29jM6lvQJSGlFKUaBVNFAFoFkdAn0BtmL9/BnV9lChoBmgJaA9DCKaYg6DjWXJAlIaUUpRoFUvjaBZHQJ9BpgCwKSh1fZQoaAZoCWgPQwj2B8pte2lvQJSGlFKUaBVL/GgWR0CfREZlWfbsdX2UKGgGaAloD0MIW0I+6BknckCUhpRSlGgVTSEBaBZHQJ9F5TkyULV1fZQoaAZoCWgPQwjoLomzog9yQJSGlFKUaBVNHAFoFkdAn0dorOJLunV9lChoBmgJaA9DCFXbTfBN7m1AlIaUUpRoFUv2aBZHQJ9IuhmGucN1fZQoaAZoCWgPQwipvB3h9IBwQJSGlFKUaBVL7mgWR0CfS1VPva11dX2UKGgGaAloD0MIvASnPpCbcECUhpRSlGgVTREBaBZHQJ9M0UN8VpN1fZQoaAZoCWgPQwjQmEnUC7pxQJSGlFKUaBVNDAFoFkdAn044+B6KL3V9lChoBmgJaA9DCLtjsU1qqHFAlIaUUpRoFU1aAWgWR0CfUZuCPIXCdX2UKGgGaAloD0MI8b2/QfsPcUCUhpRSlGgVTT4BaBZHQJ9TdNN8E3d1fZQoaAZoCWgPQwhBgAwd+09wQJSGlFKUaBVNGwFoFkdAn1UT9KmKqHV9lChoBmgJaA9DCFex+E1h+W5AlIaUUpRoFUvqaBZHQJ9WU9jgAIZ1ZS4="
73
+ },
74
+ "ep_success_buffer": {
75
+ ":type:": "<class 'collections.deque'>",
76
+ ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
77
+ },
78
+ "_n_updates": 3908,
79
+ "n_steps": 1024,
80
+ "gamma": 0.999,
81
+ "gae_lambda": 0.98,
82
+ "ent_coef": 0.01,
83
+ "vf_coef": 0.5,
84
+ "max_grad_norm": 0.5,
85
+ "batch_size": 64,
86
+ "n_epochs": 4,
87
+ "clip_range": {
88
+ ":type:": "<class 'function'>",
89
+ ":serialized:": "gAWVwwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZSMBGZ1bmOUS4BDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5SMSC91c3IvbG9jYWwvbGliL3B5dGhvbjMuOC9kaXN0LXBhY2thZ2VzL3N0YWJsZV9iYXNlbGluZXMzL2NvbW1vbi91dGlscy5weZR1Tk5oAIwQX21ha2VfZW1wdHlfY2VsbJSTlClSlIWUdJRSlIwcY2xvdWRwaWNrbGUuY2xvdWRwaWNrbGVfZmFzdJSMEl9mdW5jdGlvbl9zZXRzdGF0ZZSTlGgffZR9lChoFmgNjAxfX3F1YWxuYW1lX1+UjBljb25zdGFudF9mbi48bG9jYWxzPi5mdW5jlIwPX19hbm5vdGF0aW9uc19flH2UjA5fX2t3ZGVmYXVsdHNfX5ROjAxfX2RlZmF1bHRzX1+UTowKX19tb2R1bGVfX5RoF4wHX19kb2NfX5ROjAtfX2Nsb3N1cmVfX5RoAIwKX21ha2VfY2VsbJSTlEc/yZmZmZmZmoWUUpSFlIwXX2Nsb3VkcGlja2xlX3N1Ym1vZHVsZXOUXZSMC19fZ2xvYmFsc19flH2UdYaUhlIwLg=="
90
+ },
91
+ "clip_range_vf": null,
92
+ "normalize_advantage": true,
93
+ "target_kl": null
94
+ }
ppo-LunarLander-v2/policy.optimizer.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a5e2d6c9fc98647fea8d0eb4cad524809b46415ef7c93d4e8e485e0492e15a42
3
+ size 87929
ppo-LunarLander-v2/policy.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:aaabaa07b7f049e3461f911cc7b868c55fd932587f565b889ff2a183612b033c
3
+ size 43201
ppo-LunarLander-v2/pytorch_variables.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
3
+ size 431
ppo-LunarLander-v2/system_info.txt ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ OS: Linux-5.10.133+-x86_64-with-glibc2.27 #1 SMP Fri Aug 26 08:44:51 UTC 2022
2
+ Python: 3.8.16
3
+ Stable-Baselines3: 1.6.2
4
+ PyTorch: 1.13.0+cu116
5
+ GPU Enabled: True
6
+ Numpy: 1.21.6
7
+ Gym: 0.21.0
replay.mp4 ADDED
Binary file (238 kB). View file
 
results.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"mean_reward": 263.0219490259978, "std_reward": 21.235480273791175, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-12-12T06:10:48.599675"}