set up ppo baseline
Browse files- .gitattributes +1 -0
- README.md +28 -0
- config.json +1 -0
- ppo-LunarLander-v2.zip +3 -0
- ppo-LunarLander-v2/_stable_baselines3_version +1 -0
- ppo-LunarLander-v2/data +94 -0
- ppo-LunarLander-v2/policy.optimizer.pth +3 -0
- ppo-LunarLander-v2/policy.pth +3 -0
- ppo-LunarLander-v2/pytorch_variables.pth +3 -0
- ppo-LunarLander-v2/system_info.txt +7 -0
- replay.mp4 +3 -0
- results.json +1 -0
.gitattributes
CHANGED
@@ -25,3 +25,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
25 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
26 |
*.zstandard filter=lfs diff=lfs merge=lfs -text
|
27 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
28 |
+
*.mp4 filter=lfs diff=lfs merge=lfs -text
|
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
---
|
2 |
+
library_name: stable-baselines3
|
3 |
+
tags:
|
4 |
+
- LunarLander-v2
|
5 |
+
- deep-reinforcement-learning
|
6 |
+
- reinforcement-learning
|
7 |
+
- stable-baselines3
|
8 |
+
model-index:
|
9 |
+
- name: PPO
|
10 |
+
results:
|
11 |
+
- metrics:
|
12 |
+
- type: mean_reward
|
13 |
+
value: 164.15 +/- 88.85
|
14 |
+
name: mean_reward
|
15 |
+
task:
|
16 |
+
type: reinforcement-learning
|
17 |
+
name: reinforcement-learning
|
18 |
+
dataset:
|
19 |
+
name: LunarLander-v2
|
20 |
+
type: LunarLander-v2
|
21 |
+
---
|
22 |
+
|
23 |
+
# **PPO** Agent playing **LunarLander-v2**
|
24 |
+
This is a trained model of a **PPO** agent playing **LunarLander-v2** using the [stable-baselines3 library](https://github.com/DLR-RM/stable-baselines3).
|
25 |
+
|
26 |
+
## Usage (with Stable-baselines3)
|
27 |
+
TODO: Add your code
|
28 |
+
|
config.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"policy_class": {":type:": "<class 'abc.ABCMeta'>", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>", "_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>", "reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>", "_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>", "_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>", "forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>", "_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>", "_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>", "evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>", "get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>", "predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc_data object at 0x7f6c958459c0>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "<class 'gym.spaces.box.Box'>", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "<class 'gym.spaces.discrete.Discrete'>", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 16, "num_timesteps": 507904, "_total_timesteps": 500000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1651934320.3202248, "learning_rate": 0.0003, "tensorboard_log": null, "lr_schedule": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3iqD1ce2a6O5e3u4wCTzhQ6HG6ekxjOgAAgD8AAIA/mllLvArHQ7maBEK7m0Q/M0b2BTrSzhuzAACAPwAAgD+aPdw7SN+tuupOT7tpJmy2zumwuSiIbToAAIA/AACAPzP6uLyPThm6RnPTOwp1vja7yKS6TDrANQAAgD8AAIA/TbUZvRbMtj9Txc++4Gi1vFnQkjx45Vi8AAAAAAAAAACazbe74daDun4ia7wOv1u1mIMDu3a8zTQAAIA/AACAP62iKb42OWO8Nr89vXEbsrsGz9M9FmeQPAAAgD8AAIA/pmkEPvYMNTtjN5K9aazou3zjyzxq5c+8AACAPwAAgD9NtLa99jgrulLQSTvNK440GHGFu+vJaLoAAIA/AACAP+AqNz4p6iy8LiPsuEumvjZ4EJC9aCsOOAAAgD8AAIA/kzETPvYoZzl2GNa7IoGSuP6WPzy8yaO5AACAPwAAgD8NfKa9HuiTPlsK6z2PWAu+wfJxOi5mwzwAAAAAAAAAAEC+cz4FNB4+mliLPava/L1YU7a9ECP5PQAAAAAAAAAAy3QCP4zeA764Rsi7gkYjOeLHHr22d7e0AAAAAAAAgD9w7ZU+l5kzPzpKTD5nWbK+8eNVPrGcC74AAAAAAAAAAACkwjspCHK6gOCAu91KqjikPT86aeCEOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="}, "_last_episode_starts": {":type:": "<class 'numpy.ndarray'>", ":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.015808000000000044, "ep_info_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj1VKz/TaMsCUhpRSlIwBbJRLs4wBdJRHQIBE+OlwcYJ1fZQoaAZoCWgPQwgLfbCMDS1bQJSGlFKUaBVN6ANoFkdAgEbbAtWdVnV9lChoBmgJaA9DCPm+uFQlLmFAlIaUUpRoFU3oA2gWR0CAjPBrvb48dX2UKGgGaAloD0MIdQDEXb1iW0CUhpRSlGgVTegDaBZHQICOuZ9d/rl1fZQoaAZoCWgPQwinPpC8c2gxwJSGlFKUaBVL/2gWR0CApaeEIw/QdX2UKGgGaAloD0MIks8rnnqVXECUhpRSlGgVTegDaBZHQIC7cQZn+Q51fZQoaAZoCWgPQwiF7/0N2hpYwJSGlFKUaBVNngFoFkdAgNMQ2ETQFHV9lChoBmgJaA9DCI2ZRL1gpmBAlIaUUpRoFU3oA2gWR0CA2JWcSXdCdX2UKGgGaAloD0MIFclXAiknTUCUhpRSlGgVTegDaBZHQIDYzCLuQZJ1fZQoaAZoCWgPQwiZgcr499pbQJSGlFKUaBVN6ANoFkdAgNnjej2zwHV9lChoBmgJaA9DCG1X6INlmD9AlIaUUpRoFU3oA2gWR0CA4LksjFAFdX2UKGgGaAloD0MIjx1U4jqYYUCUhpRSlGgVTegDaBZHQIDlMcp9ZzR1fZQoaAZoCWgPQwgkYkok0e9bQJSGlFKUaBVN6ANoFkdAgOiWys0YTHV9lChoBmgJaA9DCJkSSfQyr1JAlIaUUpRoFU3oA2gWR0CA7Xfb9If9dX2UKGgGaAloD0MIKo2Y2ed2VECUhpRSlGgVTegDaBZHQID0Hx8UmD11fZQoaAZoCWgPQwi6+UZ0z3VbQJSGlFKUaBVN6ANoFkdAgQI+ZgG8mXV9lChoBmgJaA9DCO2DLAsmm1VAlIaUUpRoFU3oA2gWR0CBCg1vVEuydX2UKGgGaAloD0MIdc3km21TXkCUhpRSlGgVTegDaBZHQIEO0iW3Sa51fZQoaAZoCWgPQwiB6EmZ1GhYQJSGlFKUaBVN6ANoFkdAgRiAeJYT03V9lChoBmgJaA9DCIo73uS3FVFAlIaUUpRoFU3oA2gWR0CBYpzSThYOdX2UKGgGaAloD0MIRUseT8uvLcCUhpRSlGgVS7RoFkdAgWUo8ZDRdHV9lChoBmgJaA9DCCRDjq1n11lAlIaUUpRoFU3oA2gWR0CBgJF9a2WqdX2UKGgGaAloD0MI9YQlHlDmRMCUhpRSlGgVS+loFkdAgZBXZPEbYXV9lChoBmgJaA9DCAys4/ihDVlAlIaUUpRoFU3oA2gWR0CBmGbAk9lmdX2UKGgGaAloD0MICCC1iRPUYECUhpRSlGgVTegDaBZHQIGzG1KGtZF1fZQoaAZoCWgPQwgxYMlVLHxdQJSGlFKUaBVN6ANoFkdAgblzmOlwcnV9lChoBmgJaA9DCHicoiO5s19AlIaUUpRoFU3oA2gWR0CBubXFLnLadX2UKGgGaAloD0MItp+M8WFGN0CUhpRSlGgVTegDaBZHQIG6+ZssQNF1fZQoaAZoCWgPQwhrmQzH87EiQJSGlFKUaBVL4GgWR0CBvAO5rgwXdX2UKGgGaAloD0MIh6QWSiYtV0CUhpRSlGgVTegDaBZHQIHC61Z1V5t1fZQoaAZoCWgPQwhruwm+acoxQJSGlFKUaBVN6ANoFkdAgcexgy/KyXV9lChoBmgJaA9DCClbJO1GUVRAlIaUUpRoFU3oA2gWR0CBy0o60Y0mdX2UKGgGaAloD0MIVaUtrvGNXECUhpRSlGgVTegDaBZHQIHQHTCtRvZ1fZQoaAZoCWgPQwg3T3XIzTAFQJSGlFKUaBVLsWgWR0CB1WUVSGahdX2UKGgGaAloD0MIexAC8qU2YkCUhpRSlGgVTegDaBZHQIHWUZ3s5XF1fZQoaAZoCWgPQwheZtgo6/8uQJSGlFKUaBVL3mgWR0CB4HSH/LkkdX2UKGgGaAloD0MIUiY1tIGgYUCUhpRSlGgVTegDaBZHQIHjUAT7EYR1fZQoaAZoCWgPQwgXSbvRx8VcQJSGlFKUaBVN6ANoFkdAgep/SpiqhnV9lChoBmgJaA9DCHf3AN2XiyVAlIaUUpRoFUu7aBZHQIHvvOW0JF91fZQoaAZoCWgPQwiOdtzwuxE8QJSGlFKUaBVNMgFoFkdAgfSA08/2TXV9lChoBmgJaA9DCLDkKha/6FFAlIaUUpRoFU3oA2gWR0CB97ubZvkzdX2UKGgGaAloD0MIG2MnvATQWUCUhpRSlGgVTegDaBZHQII/yQYDT0B1fZQoaAZoCWgPQwgNx/MZUE8mwJSGlFKUaBVNNAFoFkdAgkmrXtjTa3V9lChoBmgJaA9DCIP3VblQkSLAlIaUUpRoFUv1aBZHQIJWrBKtga51fZQoaAZoCWgPQwhrmnecorVcQJSGlFKUaBVN6ANoFkdAglp2Q4jrzHV9lChoBmgJaA9DCMKmzqNicGFAlIaUUpRoFU3oA2gWR0CCb1qUNayKdX2UKGgGaAloD0MI+S6lLhnXOkCUhpRSlGgVS/loFkdAgoAWxhUip3V9lChoBmgJaA9DCDnRrkLKS11AlIaUUpRoFU3oA2gWR0CChjdzGPxQdX2UKGgGaAloD0MIGFqdnCFSYECUhpRSlGgVTegDaBZHQIKLe45Lh751fZQoaAZoCWgPQwjk84qnngpkQJSGlFKUaBVN6ANoFkdAgoupr+Hae3V9lChoBmgJaA9DCIf9nlinGWJAlIaUUpRoFU3oA2gWR0CCjLrYXfqHdX2UKGgGaAloD0MIOwDirl6xOUCUhpRSlGgVS/VoFkdAgpZ9aUzKtHV9lChoBmgJaA9DCHglyXP9mmBAlIaUUpRoFU3oA2gWR0CCl92TxG2DdX2UKGgGaAloD0MIpcACmDKIYECUhpRSlGgVTegDaBZHQIKgoIfKZD11fZQoaAZoCWgPQwgGvMywUQNZQJSGlFKUaBVN6ANoFkdAgqaDJ+2E03V9lChoBmgJaA9DCLIrLSP1jiZAlIaUUpRoFUvHaBZHQIKoIYP5HmR1fZQoaAZoCWgPQwiLbyh8tm1gQJSGlFKUaBVN6ANoFkdAgrOQ7T2FnXV9lChoBmgJaA9DCJiIt84/c2BAlIaUUpRoFU3oA2gWR0CCvkNSZSeidX2UKGgGaAloD0MIvFruzAShU0CUhpRSlGgVS7VoFkdAgsOTSCvovHV9lChoBmgJaA9DCOusFthjNmBAlIaUUpRoFU3oA2gWR0CCxDVXmvGIdX2UKGgGaAloD0MIrADfbd4pXkCUhpRSlGgVTegDaBZHQILI6M98qnZ1fZQoaAZoCWgPQwiESfHxCTkZQJSGlFKUaBVL5mgWR0CCyXiMo+fRdX2UKGgGaAloD0MINszQeCIUNUCUhpRSlGgVS6toFkdAgtcwqy4WlHV9lChoBmgJaA9DCCC4yhMIwyBAlIaUUpRoFU3oA2gWR0CC2qrEtNBXdX2UKGgGaAloD0MIgo/BilNUXkCUhpRSlGgVTegDaBZHQIMbnXmNiph1fZQoaAZoCWgPQwh6UiY1tD1DQJSGlFKUaBVL3GgWR0CDIFT72tdSdX2UKGgGaAloD0MI8BMH0O+mbECUhpRSlGgVTeoBaBZHQIMgfXd0q6R1fZQoaAZoCWgPQwir0EAsm9lYQJSGlFKUaBVN6ANoFkdAgyq0D+zdDnV9lChoBmgJaA9DCEc4LXjRtz1AlIaUUpRoFU0VAWgWR0CDTWZqmCRPdX2UKGgGaAloD0MIyxKdZRbcYECUhpRSlGgVTegDaBZHQINRGqm0mdB1fZQoaAZoCWgPQwjMQdDRqvpgQJSGlFKUaBVN6ANoFkdAg1eMFEAo5XV9lChoBmgJaA9DCEn2CDVD3mBAlIaUUpRoFU3oA2gWR0CDXRa0QbuMdX2UKGgGaAloD0MICyb+KOqkXkCUhpRSlGgVTegDaBZHQINedDSgGr11fZQoaAZoCWgPQwjeBN80fYpdQJSGlFKUaBVN6ANoFkdAg2lYe9zwMHV9lChoBmgJaA9DCPHZOjhYbWBAlIaUUpRoFU3oA2gWR0CDasHPeHi4dX2UKGgGaAloD0MIDmjpCrY4VkCUhpRSlGgVTegDaBZHQIOKQ9aEBbR1fZQoaAZoCWgPQwitpBXfUDlXQJSGlFKUaBVN6ANoFkdAg50S0rsjV3V9lChoBmgJaA9DCDJzgctjCGFAlIaUUpRoFU3oA2gWR0CDnctnwob5dX2UKGgGaAloD0MI4IEBhA/PWUCUhpRSlGgVTegDaBZHQIOjrPBzmwJ1fZQoaAZoCWgPQwgF+G7zxgJmQJSGlFKUaBVN6ANoFkdAg7KtLteD4HV9lChoBmgJaA9DCMFSXcBLOWBAlIaUUpRoFU3oA2gWR0CDtly6MBIXdX2UKGgGaAloD0MI7GexFMmlXkCUhpRSlGgVTegDaBZHQIP31lkH2RJ1fZQoaAZoCWgPQwgAjj17Lp1aQJSGlFKUaBVN6ANoFkdAg/xf/vOQhnV9lChoBmgJaA9DCEuRfCWQEglAlIaUUpRoFU0gAWgWR0CEATb6guh9dX2UKGgGaAloD0MIlGx1OSUEXECUhpRSlGgVTegDaBZHQIQGG9eyAx11fZQoaAZoCWgPQwifrBiuDqA7wJSGlFKUaBVL2mgWR0CEChIOpbUxdX2UKGgGaAloD0MIPBVwz3NZYUCUhpRSlGgVTegDaBZHQIQlFZid8Rd1fZQoaAZoCWgPQwgw8rImFpdjQJSGlFKUaBVN6ANoFkdAhCgfvF3pwHV9lChoBmgJaA9DCJbnwd3Z32JAlIaUUpRoFU3oA2gWR0CELVbsWweOdX2UKGgGaAloD0MIv/OLEvQ5YkCUhpRSlGgVTegDaBZHQIQyGYtxuKp1fZQoaAZoCWgPQwiwkSQIV4ddQJSGlFKUaBVN6ANoFkdAhDM8jAzpHXV9lChoBmgJaA9DCMwpATGJYmBAlIaUUpRoFU3oA2gWR0CEPK44Ia99dX2UKGgGaAloD0MI6e3PRcNaYECUhpRSlGgVTegDaBZHQIQ+BazNUwV1fZQoaAZoCWgPQwiXi/hOTO9pQJSGlFKUaBVN7AFoFkdAhE5PfsNUfnV9lChoBmgJaA9DCJIGt7WFSUtAlIaUUpRoFUvvaBZHQIRUa4YrJ8x1fZQoaAZoCWgPQwh5IojzcOplQJSGlFKUaBVN6ANoFkdAhFqLrgOz6nV9lChoBmgJaA9DCML3/gZtsmFAlIaUUpRoFU3oA2gWR0CEa0wX668QdX2UKGgGaAloD0MIbf/KSpPQU0CUhpRSlGgVTegDaBZHQIRxro4dZJV1fZQoaAZoCWgPQwjQudv10u9aQJSGlFKUaBVN6ANoFkdAhIVq4x1xKnV9lChoBmgJaA9DCJIIjWDjkFlAlIaUUpRoFU3oA2gWR0CEj8EQGwA3dWUu"}, "ep_success_buffer": {":type:": "<class 'collections.deque'>", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 124, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 64, "n_epochs": 4, "clip_range": {":type:": "<class 'function'>", ":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022", "Python": "3.7.13", "Stable-Baselines3": "1.5.0", "PyTorch": "1.11.0+cu113", "GPU Enabled": "True", "Numpy": "1.21.6", "Gym": "0.21.0"}}
|
ppo-LunarLander-v2.zip
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:837520db42eb045a39a2133c286bce855f8729c9a2d52ab9b9a9558212903050
|
3 |
+
size 144024
|
ppo-LunarLander-v2/_stable_baselines3_version
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
1.5.0
|
ppo-LunarLander-v2/data
ADDED
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"policy_class": {
|
3 |
+
":type:": "<class 'abc.ABCMeta'>",
|
4 |
+
":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==",
|
5 |
+
"__module__": "stable_baselines3.common.policies",
|
6 |
+
"__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param sde_net_arch: Network architecture for extracting features\n when using gSDE. If None, the latent features from the policy will be used.\n Pass an empty list to use the states as features.\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ",
|
7 |
+
"__init__": "<function ActorCriticPolicy.__init__ at 0x7f6c9587a830>",
|
8 |
+
"_get_constructor_parameters": "<function ActorCriticPolicy._get_constructor_parameters at 0x7f6c9587a8c0>",
|
9 |
+
"reset_noise": "<function ActorCriticPolicy.reset_noise at 0x7f6c9587a950>",
|
10 |
+
"_build_mlp_extractor": "<function ActorCriticPolicy._build_mlp_extractor at 0x7f6c9587a9e0>",
|
11 |
+
"_build": "<function ActorCriticPolicy._build at 0x7f6c9587aa70>",
|
12 |
+
"forward": "<function ActorCriticPolicy.forward at 0x7f6c9587ab00>",
|
13 |
+
"_get_action_dist_from_latent": "<function ActorCriticPolicy._get_action_dist_from_latent at 0x7f6c9587ab90>",
|
14 |
+
"_predict": "<function ActorCriticPolicy._predict at 0x7f6c9587ac20>",
|
15 |
+
"evaluate_actions": "<function ActorCriticPolicy.evaluate_actions at 0x7f6c9587acb0>",
|
16 |
+
"get_distribution": "<function ActorCriticPolicy.get_distribution at 0x7f6c9587ad40>",
|
17 |
+
"predict_values": "<function ActorCriticPolicy.predict_values at 0x7f6c9587add0>",
|
18 |
+
"__abstractmethods__": "frozenset()",
|
19 |
+
"_abc_impl": "<_abc_data object at 0x7f6c958459c0>"
|
20 |
+
},
|
21 |
+
"verbose": 1,
|
22 |
+
"policy_kwargs": {},
|
23 |
+
"observation_space": {
|
24 |
+
":type:": "<class 'gym.spaces.box.Box'>",
|
25 |
+
":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu",
|
26 |
+
"dtype": "float32",
|
27 |
+
"_shape": [
|
28 |
+
8
|
29 |
+
],
|
30 |
+
"low": "[-inf -inf -inf -inf -inf -inf -inf -inf]",
|
31 |
+
"high": "[inf inf inf inf inf inf inf inf]",
|
32 |
+
"bounded_below": "[False False False False False False False False]",
|
33 |
+
"bounded_above": "[False False False False False False False False]",
|
34 |
+
"_np_random": null
|
35 |
+
},
|
36 |
+
"action_space": {
|
37 |
+
":type:": "<class 'gym.spaces.discrete.Discrete'>",
|
38 |
+
":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu",
|
39 |
+
"n": 4,
|
40 |
+
"_shape": [],
|
41 |
+
"dtype": "int64",
|
42 |
+
"_np_random": null
|
43 |
+
},
|
44 |
+
"n_envs": 16,
|
45 |
+
"num_timesteps": 507904,
|
46 |
+
"_total_timesteps": 500000,
|
47 |
+
"_num_timesteps_at_start": 0,
|
48 |
+
"seed": null,
|
49 |
+
"action_noise": null,
|
50 |
+
"start_time": 1651934320.3202248,
|
51 |
+
"learning_rate": 0.0003,
|
52 |
+
"tensorboard_log": null,
|
53 |
+
"lr_schedule": {
|
54 |
+
":type:": "<class 'function'>",
|
55 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8zqSowVTJhhZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
56 |
+
},
|
57 |
+
"_last_obs": {
|
58 |
+
":type:": "<class 'numpy.ndarray'>",
|
59 |
+
":serialized:": "gAWVdQIAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYAAgAAAAAAAM3iqD1ce2a6O5e3u4wCTzhQ6HG6ekxjOgAAgD8AAIA/mllLvArHQ7maBEK7m0Q/M0b2BTrSzhuzAACAPwAAgD+aPdw7SN+tuupOT7tpJmy2zumwuSiIbToAAIA/AACAPzP6uLyPThm6RnPTOwp1vja7yKS6TDrANQAAgD8AAIA/TbUZvRbMtj9Txc++4Gi1vFnQkjx45Vi8AAAAAAAAAACazbe74daDun4ia7wOv1u1mIMDu3a8zTQAAIA/AACAP62iKb42OWO8Nr89vXEbsrsGz9M9FmeQPAAAgD8AAIA/pmkEPvYMNTtjN5K9aazou3zjyzxq5c+8AACAPwAAgD9NtLa99jgrulLQSTvNK440GHGFu+vJaLoAAIA/AACAP+AqNz4p6iy8LiPsuEumvjZ4EJC9aCsOOAAAgD8AAIA/kzETPvYoZzl2GNa7IoGSuP6WPzy8yaO5AACAPwAAgD8NfKa9HuiTPlsK6z2PWAu+wfJxOi5mwzwAAAAAAAAAAEC+cz4FNB4+mliLPava/L1YU7a9ECP5PQAAAAAAAAAAy3QCP4zeA764Rsi7gkYjOeLHHr22d7e0AAAAAAAAgD9w7ZU+l5kzPzpKTD5nWbK+8eNVPrGcC74AAAAAAAAAAACkwjspCHK6gOCAu91KqjikPT86aeCEOQAAgD8AAIA/lIwFbnVtcHmUjAVkdHlwZZSTlIwCZjSUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYksQSwiGlIwBQ5R0lFKULg=="
|
60 |
+
},
|
61 |
+
"_last_episode_starts": {
|
62 |
+
":type:": "<class 'numpy.ndarray'>",
|
63 |
+
":serialized:": "gAWVgwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYQAAAAAAAAAAAAAAAAAAAAAAAAAAAAAACUjAVudW1weZSMBWR0eXBllJOUjAJiMZSJiIeUUpQoSwOMAXyUTk5OSv////9K/////0sAdJRiSxCFlIwBQ5R0lFKULg=="
|
64 |
+
},
|
65 |
+
"_last_original_obs": null,
|
66 |
+
"_episode_num": 0,
|
67 |
+
"use_sde": false,
|
68 |
+
"sde_sample_freq": -1,
|
69 |
+
"_current_progress_remaining": -0.015808000000000044,
|
70 |
+
"ep_info_buffer": {
|
71 |
+
":type:": "<class 'collections.deque'>",
|
72 |
+
":serialized:": "gAWVbxAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIj1VKz/TaMsCUhpRSlIwBbJRLs4wBdJRHQIBE+OlwcYJ1fZQoaAZoCWgPQwgLfbCMDS1bQJSGlFKUaBVN6ANoFkdAgEbbAtWdVnV9lChoBmgJaA9DCPm+uFQlLmFAlIaUUpRoFU3oA2gWR0CAjPBrvb48dX2UKGgGaAloD0MIdQDEXb1iW0CUhpRSlGgVTegDaBZHQICOuZ9d/rl1fZQoaAZoCWgPQwinPpC8c2gxwJSGlFKUaBVL/2gWR0CApaeEIw/QdX2UKGgGaAloD0MIks8rnnqVXECUhpRSlGgVTegDaBZHQIC7cQZn+Q51fZQoaAZoCWgPQwiF7/0N2hpYwJSGlFKUaBVNngFoFkdAgNMQ2ETQFHV9lChoBmgJaA9DCI2ZRL1gpmBAlIaUUpRoFU3oA2gWR0CA2JWcSXdCdX2UKGgGaAloD0MIFclXAiknTUCUhpRSlGgVTegDaBZHQIDYzCLuQZJ1fZQoaAZoCWgPQwiZgcr499pbQJSGlFKUaBVN6ANoFkdAgNnjej2zwHV9lChoBmgJaA9DCG1X6INlmD9AlIaUUpRoFU3oA2gWR0CA4LksjFAFdX2UKGgGaAloD0MIjx1U4jqYYUCUhpRSlGgVTegDaBZHQIDlMcp9ZzR1fZQoaAZoCWgPQwgkYkok0e9bQJSGlFKUaBVN6ANoFkdAgOiWys0YTHV9lChoBmgJaA9DCJkSSfQyr1JAlIaUUpRoFU3oA2gWR0CA7Xfb9If9dX2UKGgGaAloD0MIKo2Y2ed2VECUhpRSlGgVTegDaBZHQID0Hx8UmD11fZQoaAZoCWgPQwi6+UZ0z3VbQJSGlFKUaBVN6ANoFkdAgQI+ZgG8mXV9lChoBmgJaA9DCO2DLAsmm1VAlIaUUpRoFU3oA2gWR0CBCg1vVEuydX2UKGgGaAloD0MIdc3km21TXkCUhpRSlGgVTegDaBZHQIEO0iW3Sa51fZQoaAZoCWgPQwiB6EmZ1GhYQJSGlFKUaBVN6ANoFkdAgRiAeJYT03V9lChoBmgJaA9DCIo73uS3FVFAlIaUUpRoFU3oA2gWR0CBYpzSThYOdX2UKGgGaAloD0MIRUseT8uvLcCUhpRSlGgVS7RoFkdAgWUo8ZDRdHV9lChoBmgJaA9DCCRDjq1n11lAlIaUUpRoFU3oA2gWR0CBgJF9a2WqdX2UKGgGaAloD0MI9YQlHlDmRMCUhpRSlGgVS+loFkdAgZBXZPEbYXV9lChoBmgJaA9DCAys4/ihDVlAlIaUUpRoFU3oA2gWR0CBmGbAk9lmdX2UKGgGaAloD0MICCC1iRPUYECUhpRSlGgVTegDaBZHQIGzG1KGtZF1fZQoaAZoCWgPQwgxYMlVLHxdQJSGlFKUaBVN6ANoFkdAgblzmOlwcnV9lChoBmgJaA9DCHicoiO5s19AlIaUUpRoFU3oA2gWR0CBubXFLnLadX2UKGgGaAloD0MItp+M8WFGN0CUhpRSlGgVTegDaBZHQIG6+ZssQNF1fZQoaAZoCWgPQwhrmQzH87EiQJSGlFKUaBVL4GgWR0CBvAO5rgwXdX2UKGgGaAloD0MIh6QWSiYtV0CUhpRSlGgVTegDaBZHQIHC61Z1V5t1fZQoaAZoCWgPQwhruwm+acoxQJSGlFKUaBVN6ANoFkdAgcexgy/KyXV9lChoBmgJaA9DCClbJO1GUVRAlIaUUpRoFU3oA2gWR0CBy0o60Y0mdX2UKGgGaAloD0MIVaUtrvGNXECUhpRSlGgVTegDaBZHQIHQHTCtRvZ1fZQoaAZoCWgPQwg3T3XIzTAFQJSGlFKUaBVLsWgWR0CB1WUVSGahdX2UKGgGaAloD0MIexAC8qU2YkCUhpRSlGgVTegDaBZHQIHWUZ3s5XF1fZQoaAZoCWgPQwheZtgo6/8uQJSGlFKUaBVL3mgWR0CB4HSH/LkkdX2UKGgGaAloD0MIUiY1tIGgYUCUhpRSlGgVTegDaBZHQIHjUAT7EYR1fZQoaAZoCWgPQwgXSbvRx8VcQJSGlFKUaBVN6ANoFkdAgep/SpiqhnV9lChoBmgJaA9DCHf3AN2XiyVAlIaUUpRoFUu7aBZHQIHvvOW0JF91fZQoaAZoCWgPQwiOdtzwuxE8QJSGlFKUaBVNMgFoFkdAgfSA08/2TXV9lChoBmgJaA9DCLDkKha/6FFAlIaUUpRoFU3oA2gWR0CB97ubZvkzdX2UKGgGaAloD0MIG2MnvATQWUCUhpRSlGgVTegDaBZHQII/yQYDT0B1fZQoaAZoCWgPQwgNx/MZUE8mwJSGlFKUaBVNNAFoFkdAgkmrXtjTa3V9lChoBmgJaA9DCIP3VblQkSLAlIaUUpRoFUv1aBZHQIJWrBKtga51fZQoaAZoCWgPQwhrmnecorVcQJSGlFKUaBVN6ANoFkdAglp2Q4jrzHV9lChoBmgJaA9DCMKmzqNicGFAlIaUUpRoFU3oA2gWR0CCb1qUNayKdX2UKGgGaAloD0MI+S6lLhnXOkCUhpRSlGgVS/loFkdAgoAWxhUip3V9lChoBmgJaA9DCDnRrkLKS11AlIaUUpRoFU3oA2gWR0CChjdzGPxQdX2UKGgGaAloD0MIGFqdnCFSYECUhpRSlGgVTegDaBZHQIKLe45Lh751fZQoaAZoCWgPQwjk84qnngpkQJSGlFKUaBVN6ANoFkdAgoupr+Hae3V9lChoBmgJaA9DCIf9nlinGWJAlIaUUpRoFU3oA2gWR0CCjLrYXfqHdX2UKGgGaAloD0MIOwDirl6xOUCUhpRSlGgVS/VoFkdAgpZ9aUzKtHV9lChoBmgJaA9DCHglyXP9mmBAlIaUUpRoFU3oA2gWR0CCl92TxG2DdX2UKGgGaAloD0MIpcACmDKIYECUhpRSlGgVTegDaBZHQIKgoIfKZD11fZQoaAZoCWgPQwgGvMywUQNZQJSGlFKUaBVN6ANoFkdAgqaDJ+2E03V9lChoBmgJaA9DCLIrLSP1jiZAlIaUUpRoFUvHaBZHQIKoIYP5HmR1fZQoaAZoCWgPQwiLbyh8tm1gQJSGlFKUaBVN6ANoFkdAgrOQ7T2FnXV9lChoBmgJaA9DCJiIt84/c2BAlIaUUpRoFU3oA2gWR0CCvkNSZSeidX2UKGgGaAloD0MIvFruzAShU0CUhpRSlGgVS7VoFkdAgsOTSCvovHV9lChoBmgJaA9DCOusFthjNmBAlIaUUpRoFU3oA2gWR0CCxDVXmvGIdX2UKGgGaAloD0MIrADfbd4pXkCUhpRSlGgVTegDaBZHQILI6M98qnZ1fZQoaAZoCWgPQwiESfHxCTkZQJSGlFKUaBVL5mgWR0CCyXiMo+fRdX2UKGgGaAloD0MINszQeCIUNUCUhpRSlGgVS6toFkdAgtcwqy4WlHV9lChoBmgJaA9DCCC4yhMIwyBAlIaUUpRoFU3oA2gWR0CC2qrEtNBXdX2UKGgGaAloD0MIgo/BilNUXkCUhpRSlGgVTegDaBZHQIMbnXmNiph1fZQoaAZoCWgPQwh6UiY1tD1DQJSGlFKUaBVL3GgWR0CDIFT72tdSdX2UKGgGaAloD0MI8BMH0O+mbECUhpRSlGgVTeoBaBZHQIMgfXd0q6R1fZQoaAZoCWgPQwir0EAsm9lYQJSGlFKUaBVN6ANoFkdAgyq0D+zdDnV9lChoBmgJaA9DCEc4LXjRtz1AlIaUUpRoFU0VAWgWR0CDTWZqmCRPdX2UKGgGaAloD0MIyxKdZRbcYECUhpRSlGgVTegDaBZHQINRGqm0mdB1fZQoaAZoCWgPQwjMQdDRqvpgQJSGlFKUaBVN6ANoFkdAg1eMFEAo5XV9lChoBmgJaA9DCEn2CDVD3mBAlIaUUpRoFU3oA2gWR0CDXRa0QbuMdX2UKGgGaAloD0MICyb+KOqkXkCUhpRSlGgVTegDaBZHQINedDSgGr11fZQoaAZoCWgPQwjeBN80fYpdQJSGlFKUaBVN6ANoFkdAg2lYe9zwMHV9lChoBmgJaA9DCPHZOjhYbWBAlIaUUpRoFU3oA2gWR0CDasHPeHi4dX2UKGgGaAloD0MIDmjpCrY4VkCUhpRSlGgVTegDaBZHQIOKQ9aEBbR1fZQoaAZoCWgPQwitpBXfUDlXQJSGlFKUaBVN6ANoFkdAg50S0rsjV3V9lChoBmgJaA9DCDJzgctjCGFAlIaUUpRoFU3oA2gWR0CDnctnwob5dX2UKGgGaAloD0MI4IEBhA/PWUCUhpRSlGgVTegDaBZHQIOjrPBzmwJ1fZQoaAZoCWgPQwgF+G7zxgJmQJSGlFKUaBVN6ANoFkdAg7KtLteD4HV9lChoBmgJaA9DCMFSXcBLOWBAlIaUUpRoFU3oA2gWR0CDtly6MBIXdX2UKGgGaAloD0MI7GexFMmlXkCUhpRSlGgVTegDaBZHQIP31lkH2RJ1fZQoaAZoCWgPQwgAjj17Lp1aQJSGlFKUaBVN6ANoFkdAg/xf/vOQhnV9lChoBmgJaA9DCEuRfCWQEglAlIaUUpRoFU0gAWgWR0CEATb6guh9dX2UKGgGaAloD0MIlGx1OSUEXECUhpRSlGgVTegDaBZHQIQGG9eyAx11fZQoaAZoCWgPQwifrBiuDqA7wJSGlFKUaBVL2mgWR0CEChIOpbUxdX2UKGgGaAloD0MIPBVwz3NZYUCUhpRSlGgVTegDaBZHQIQlFZid8Rd1fZQoaAZoCWgPQwgw8rImFpdjQJSGlFKUaBVN6ANoFkdAhCgfvF3pwHV9lChoBmgJaA9DCJbnwd3Z32JAlIaUUpRoFU3oA2gWR0CELVbsWweOdX2UKGgGaAloD0MIv/OLEvQ5YkCUhpRSlGgVTegDaBZHQIQyGYtxuKp1fZQoaAZoCWgPQwiwkSQIV4ddQJSGlFKUaBVN6ANoFkdAhDM8jAzpHXV9lChoBmgJaA9DCMwpATGJYmBAlIaUUpRoFU3oA2gWR0CEPK44Ia99dX2UKGgGaAloD0MI6e3PRcNaYECUhpRSlGgVTegDaBZHQIQ+BazNUwV1fZQoaAZoCWgPQwiXi/hOTO9pQJSGlFKUaBVN7AFoFkdAhE5PfsNUfnV9lChoBmgJaA9DCJIGt7WFSUtAlIaUUpRoFUvvaBZHQIRUa4YrJ8x1fZQoaAZoCWgPQwh5IojzcOplQJSGlFKUaBVN6ANoFkdAhFqLrgOz6nV9lChoBmgJaA9DCML3/gZtsmFAlIaUUpRoFU3oA2gWR0CEa0wX668QdX2UKGgGaAloD0MIbf/KSpPQU0CUhpRSlGgVTegDaBZHQIRxro4dZJV1fZQoaAZoCWgPQwjQudv10u9aQJSGlFKUaBVN6ANoFkdAhIVq4x1xKnV9lChoBmgJaA9DCJIIjWDjkFlAlIaUUpRoFU3oA2gWR0CEj8EQGwA3dWUu"
|
73 |
+
},
|
74 |
+
"ep_success_buffer": {
|
75 |
+
":type:": "<class 'collections.deque'>",
|
76 |
+
":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="
|
77 |
+
},
|
78 |
+
"_n_updates": 124,
|
79 |
+
"n_steps": 1024,
|
80 |
+
"gamma": 0.999,
|
81 |
+
"gae_lambda": 0.98,
|
82 |
+
"ent_coef": 0.01,
|
83 |
+
"vf_coef": 0.5,
|
84 |
+
"max_grad_norm": 0.5,
|
85 |
+
"batch_size": 64,
|
86 |
+
"n_epochs": 4,
|
87 |
+
"clip_range": {
|
88 |
+
":type:": "<class 'function'>",
|
89 |
+
":serialized:": "gAWVvwIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwNX2J1aWx0aW5fdHlwZZSTlIwKTGFtYmRhVHlwZZSFlFKUKGgCjAhDb2RlVHlwZZSFlFKUKEsBSwBLAUsBSxNDBIgAUwCUToWUKYwBX5SFlIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lIwEZnVuY5RLgEMCAAGUjAN2YWyUhZQpdJRSlH2UKIwLX19wYWNrYWdlX1+UjBhzdGFibGVfYmFzZWxpbmVzMy5jb21tb26UjAhfX25hbWVfX5SMHnN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi51dGlsc5SMCF9fZmlsZV9flIxIL3Vzci9sb2NhbC9saWIvcHl0aG9uMy43L2Rpc3QtcGFja2FnZXMvc3RhYmxlX2Jhc2VsaW5lczMvY29tbW9uL3V0aWxzLnB5lHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaCB9lH2UKGgXaA6MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgYjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"
|
90 |
+
},
|
91 |
+
"clip_range_vf": null,
|
92 |
+
"normalize_advantage": true,
|
93 |
+
"target_kl": null
|
94 |
+
}
|
ppo-LunarLander-v2/policy.optimizer.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:791b84b46deeb157ad53b89d52491a457f38efe3024310b0a406720ba6d7365f
|
3 |
+
size 84829
|
ppo-LunarLander-v2/policy.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ff01a19024bb51d97f5e557cef79ebc818273fb5b848a37d79b1fae53cf72904
|
3 |
+
size 43201
|
ppo-LunarLander-v2/pytorch_variables.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d030ad8db708280fcae77d87e973102039acd23a11bdecc3db8eb6c0ac940ee1
|
3 |
+
size 431
|
ppo-LunarLander-v2/system_info.txt
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
OS: Linux-5.4.188+-x86_64-with-Ubuntu-18.04-bionic #1 SMP Sun Apr 24 10:03:06 PDT 2022
|
2 |
+
Python: 3.7.13
|
3 |
+
Stable-Baselines3: 1.5.0
|
4 |
+
PyTorch: 1.11.0+cu113
|
5 |
+
GPU Enabled: True
|
6 |
+
Numpy: 1.21.6
|
7 |
+
Gym: 0.21.0
|
replay.mp4
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1093113affb9011caf5ddfe7eea4e48cc6506ec7407b447b7e28cb1a9b2818fb
|
3 |
+
size 264188
|
results.json
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
{"mean_reward": 164.1464231207277, "std_reward": 88.84532859406491, "is_deterministic": true, "n_eval_episodes": 10, "eval_datetime": "2022-05-07T15:04:04.689683"}
|